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1.0 CONTINUITY EQUATION

Both the vertically-integrated (ADCIRC-2DDI) and the fully three-dimensional (ADCIRC-3D)
versions of ADCIRC solve a vertically-integrated continuity equation for water surface
elevation. To avoid the spurious oscillations that are associated with a primitive Galerkin finite
element formulation of this equation, ADCIRC utilizes the Generalized Wave Continuity
Equation (GWCE) formulation. Development of the weak weighted residual form of the GWCE
used in ADCIRC is described below.

The vertically-integrated continuity equation is

oH 0 B
E+§(UH)+5(VH)_0 (1.1)

where

1 ¢
U,V = EL’ u,v dz = depth-averaged velocities in the x,y directions

u,v = vertically-varying velocities in the x,y directions

H = + h =total water column thickness

h = bathymetric depth (distance from the geiod to the bottom)
¢ = free surface departure from the geoid

Take /ot of Eq. (1.1), add to this Eq. (1.1) multiplied by the parameter 7, (which may be

variable in space), assume a bathymetric depth that does not change in time, (i.e.,
OH /ot = &C /0t ) and rearrange using the chain rule

5 5 -
aé/+T0%+aJx+aJ)'_UHaz-o_VHaz—0:0 (1.2)
o’ ot oOx Oy ox oy
where
- 0
JXEE(UH)—H'OUH (1.3)
o0
=—47, 1.4
o 0, (1.4)
=H8—U+Ua—§+roUH (1.5)
ot ot



jysﬁ(VH)onH (1.6)

ot
o0,
_ 7, 1.7
410, (1.7)
:Ha—V+V%+rOVH (1.8)
ot ot

0., 0,=UH,VH =x, y - directed fluxes per unit width

Note that Egs. (1.3) - (1.5) are equivalent as are Egs. (1.6) - (1.8).

The weighted residual method is applied to Eq. (1.2) by multiplying each term by a weighting
function ¢, and integrating over the horizontal computational domain Q.

x4 2lq oJ . oJ, N\ [0t N\ [ 070\
<8t2’ j>+<ro Pl J,>+< o ,¢j>+< o ,¢j> <UH o ,¢j> <VH o ,¢j> 0 (1.9)

where, the inner product notation < > is defined as

(r-9)

j Y¢,dQ (1.10)
Q
Integrating the terms involving j, and J, by parts, yields a weak form of this equation

0’ oc N\ [~ 99\ |- 99,
<¥’¢-’>+<“5’ > <"X’ ax> <"y’ ay>

_ 0T, _ 07, 90y _
<UH . ,¢j> <VH o ,¢j>+ ! { > +TOQN}¢de—O

(1.11)

The integration by parts introduces an integral along the boundary of the computational domain,
[", involving the components of j, and J, normal to the boundary. Using Egs. (1.4) and (1.7),

this can be converted to the integral of the outward flux per unit width normal to the boundary,
0, , contained in Eq. (1.11).



The GWCE derivation is completed by substituting the vertically-integrated momentum
equations in conservative form, (Egs. (2.2)) into Egs. (1.4) and (1.7) or in non-conservative form
(Egs. (2.1)) into Egs. (1.5) and (1.8). Kolar et al, (ref) has shown that the form of the momentum
equations used in the GWCE should match that used for the momentum (velocity) solution (see
Section 2). The original version of ADCIRC-2DDI uses the non-conservative momentum
equations, although a conservative formulation has been added to ADCIRC (version 44.15).
Making this substitution and isolating the linear free surface gravity wave terms gives:

. 0
J,X=Jx—gha—§
X (1.12)
. oL
JVZJ_V_gh_
J ay

where for the non-conservative formulation:

olp/gp,—an] ra_zu

oU ouU Bl
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ox oy

72 ox ox Po P
+MX—DX—BX+U%+TUQX
ot (1.13)
ov ov ol o|P,/gp,—
=020 W po 8% yllPigeen] o r
ox oy 2 Oy oy Po  Po

0
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and for the conservative formulation:

oU: 2 0 -
Jx=—%—£+ny—§ai—gH [Ps/gp{, 0677]4_&_&
ox oy 2 Ox ox Po  Po
+M—D.—B.+7.0, (1.14)
oV 2 o, _
g0 VO, o 80y olpJgpan] o
ox oy 2 Oy oy Po  Po

Substituting Eqgs. (1.12) into Eq. (1.11) and rearranging yields the weighted residual form of the
GWHCE that is solved by ADCIRC:



e oc 09, g 09,
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Term by term integration of Eq. (1.15) yields:

(1.15)

(220) <5(%0an -5 (25) fasan -$5($0.2)
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NE,-_ 3
:;g én;

n Ty

where

A, = area of element n
NE;

Ane; = ZAn = area of all elements containing node j
’ n=1

NE ; = number of elements containing node j

<Qaro > J aro¢dQ Yo [ f ¢dQ]

J [EM&J@&!HZZ[ TMQN,] Jopdr =3

6 j

TonQN,:D



L, = length of element leg n

h,= EZh, = average bathymetric water depth over element n
i=1

Toi — average T, over element n
1 3
jxn, an = EZ«]M" Jy,' = average JX, Jy over element n
i=1

R 1S
0.,.9, = EZQW Q,,=average Q , Q, over element n
i=l1

/AR
P2 i

¢ ;= horizontal weighting function, =1 at node j, =0 at all other nodes,

varies linearly between adjacent nodes

0p, 09, b, a,
o 24, 2A,

oc) __ 1 ¢ !
(axj 2An(;g’ j [c’?yl ZAIZZEM]

AI=X37 X2 A2= X177 X3 A3= X277 X1

b15y2_y3; b25y3_y1; b35y1_y2

xi» ¥; = horizontal coordinates of node i

The definition of the weighting function ¢, reduces integration over the horizontal domain € to

integration over only the NE; elements containing node j. Also, we assume a Galerkin finite
element formulation in which the basis and weighting functions vary linearly within an element.
Therefore, spatial derivatives are constant within an element and can be pulled out of elemental
integrations.

After integration, Eq. (1.15) becomes

NE; ) 3 2 3 o
;{% |:iz=1:¢lj é/ ronZ‘/’u aé;j| 4A, {b Zélb +ajzé,a’:|} -

ot
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Equation (1.16) presents the spatially discretized solution for elevation at horizontal node j used
by ADCIRC. This equation is discretized in time using a three time level scheme at the past (s-
1), present (s) and future (s+1) times as described below:

0%, _¢,"=2 ¢

or’ AL
aé,i ~ §;+1_§;—1
ot 2At

s+l R s-1
C,-=alé';+ +a2§;+a3§f

s+1 s—1
aQNi — QNi _QNi
ot 2At

1
QN,-ZOMQS+ +0(2Q +a3Q

— — =5 =s
an)Jyn _JX)‘I,Jyn

Substituting these time discretizations into Eq. (1.16) and re-arranging yields:

A, LTS oot
o il 3T
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A, T on
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where

*-l vl ¢
é/iﬁ— :§j+ _é/j
*o . i—1
é,ib:é,;_é/?

(1.18)

The left side of Eq. (1.17) is a sparse symmetric matrix (number of nodes x number of nodes)
and the right side is a vector. The normal flux terms are only included in equations

corresponding to boundary nodes.
Eq. (1.18) requires evaluation of j' .’ ~as defined in Egs. (1.13) and (1.14).

For the non-conservative formulation:
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For the conservative formulation (version 1):

—SZ_LB S?,_L3 Sorrs _S_i3 25
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gﬁzs : N T sx ' T bx ' — — — K
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(1.19)

(1.20)

A second conservative formulation (version 2) is obtained by expanding the advective terms

using the product rule:

10



. Y, U, U, g~
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EH S p fgp,~an]h {M) _[Z’] D B(s),

24, = (1.21)
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n

Using definitions and expressions for the various terms in the momentum equations presented in
Section 2.0, the evaluation of ./, using Egs. (1.19) - (1.21) is straightforward with the

exception of the vertically-integrated lateral stress gradient terms, Af . M ,, that are defined as:

M= al_ér” + agrw
* Y (1.22)
_OHrty OHT,y
M,= +
ox oy

The vertically-integrated, lateral stresses, Hr,., Ht,,= Ht,,, Hrt,,, derive from time averaging the
advection terms in the momentum equations. They are due to high frequency fluctuations in the
flow field that are not explicitly included in the model solution and they have no absolute
relationship to the time averaged variables that are solved for. Rather, they must be
approximated using a closure assumption. It is usually assumed that their significance is small
compared to the other terms in the momentum equations, yet in practice most models depend on
these terms to stabilize the numerical solution. While the use of a diffusive-type expression for
these terms is standard, the exact form is equivocal.

The original version of ADCIRC represents these terms in the GWCE as:

0 0
HTxx—Eh an HTyx—Eh aQ
” (1.23)
00, 20,
Hz-x}szh Hz-yy:Eh
ox oy

As described in Section 2, several alternative lateral stress closures have been added to more
recent version of ADCIRC.
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Substituting Eqs. (1.23) (or one of the alternates) into Eq. (1.22) generates terms containing
second derivatives of Q,, O, or U, V. This requires additional consideration because second
derivative terms can not be represented directly using linear basis functions (i.e., the second
derivative of a linear function is zero).

Kolar and Gray (1990) proposed a solution to this difficulty provided the lateral stresses are
computed using Eq. (1.23) and the lateral stress coefficient, £, is constant in space. Isolating
the lateral stress gradient terms from J, J, in Eq. (1.15) yields:

09, o9,
<Mx, o >+<My, o > (1.24)
Integrating by parts:

09, 0p,\ oM. oM ,
<Mx, p» >+<My, o >— < - ,¢> < ¢>+jM ¢ dT (1.25)

where M, is the component of the lateral stress gradient normal to the boundary.

Inserting the definition of the lateral stress gradients, Eq. (1.22), and the closure in Eq. (1.23)
into Eq. (1.25) and rearranging terms gives:

(12 %, %,)|,2 %0, %0,
<{8x{8x[E Ox }ay(Eh Ox ﬂJraiax[E ay J+8y(Eh oy ﬂ}’¢/>+lMN¢/dr

Using the product rule and substituting in the depth-averaged continuity equation, yields:

0| 0B, 00, , E, 00, £ (6{) 0, 00, £, 00, . (agj y
ox| ox ox 8y ox ox\ ot 8y Ox Oy 6y oy ay\ ot )||7"

+IMN¢de
r

This can be condensed to

_<aj;crx’ ,-> <8My ¢>+IM g dr (1.26)
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by defining modified lateral stress gradient terms:

0
= OE1 00, | O Qy_Ehg(a_gj
x Ox 0Oy Ox ox\ ot (27
, _OE 00,  0E, 99, 0 (a;j
M= + —Ei—| =
ox oy Oy Oy oy \ ot
Integrating Eq. (1.26) by parts yields:
’ a¢I , a¢; ,
<M . >+<M "5 +1[MN¢"dF_lM $dT (128)

where M, is the component of the modified lateral stress gradient normal to the boundary.

Neglecting the two boundary integral terms in Eq. (1.28), reduces Eq. (1.28) to Eq. (1.24) and
suggests that A7, ~ M., M ,~M,. Boundary integrals of lateral stress gradient terms are also

neglected in the development of the momentum equations in Section 2. Discretizing in time and
averaging in space on an element yields final expressions for the lateral stress gradient terms:

B s s s O s B *g
M~ OE} 00, " OE; 99, ~E ¢
ox Ox Oy Ox Ox

*s

_ s s s 8 S _ L
MS ~ aEh aQ)L + aEh Qy _E}; aé/
Yo ox oy oy oy oy

(1.29)

If E, is constant in space, Eq. (1.29) is equivalent to the lateral stress gradient terms derived by
Kolar and Gray (1990) and implemented in the original version of ADCIRC.

An alternative, two part approach for evaluating the lateral stress gradient terms is first to
compute the lateral stresses, Hty., Htyy, Hty, and Hr,,, at the nodes and second to expand these
values using linear basis functions, thereby allowing spatial gradients to be computed. This
approach has a considerable advantage over the previous approach because it is not restricted to
a specific lateral stress closure.

For purposes of illustration the first step is applied to Hz,, in Eq. (1.23). Multiplying by a
weighting function and integrating across the domain gives:

(Hrw)) —<Eh 8@% 4 j> -0

13



The first term is integrated using mass lumping (i.e., Rule 1 described in APPENDIX — BASIC
CALCULATIONS ON LINEAR TRIANGLES). The second term is integrated consistently
(i.e., Rule 2). The resulting vertically-integrated lateral stress at node j is:

NE; 3

14



2.0 2D MOMENTUM EQUATIONS

Both the vertically-integrated (ADCIRC-2DDI) and the fully three-dimensional (ADCIRC-3D)
versions of ADCIRC substitute the vertically-integrated momentum equations into the continuity
equation to form the GWCE as described in the previous section. The GWCE is solved to
determine the new free surface elevation. ADCIRC-2DDI solves the vertically-integrated
momentum equations to determine the depth-averaged velocity. The vertically-integrated,
momentum equations can be written in either non-conservative form:

o0|¢ + P, -
Uy, U [c+P/ep,—an] .  zn M. D. B.

o ox oy ox HP, HP, H H H on
W gy o JOlErPIgpan] vy tw M, D, B,
ot Ox oy oy HP, HP, H H H
or conservative form,
aQ aUQx aVQx a[g—i_Ps/gpn_an] Tsx  Thx
=+ + - =-gH +——-—"+M,—D.— B
o o oy 1977 ox P, P, o
09, oUQ, ovQ, 8[§+P,/gp _6”7] T Th .
+ + ~+ fQ.,=-gH = +—=2——+M,—-D,—
o o T /=8 Py p, p, MsmD:7B

where,

0., 0,=UH,VH =x, y - directed flux per unit width
_0D., 0D

L= + —= = momentum dispersion
ox oy

D, = ODuw + Dy = momentum dispersion
ox oy

Du=|" (u=U)(u-U)dz
(

D= f (u —U) v—V)dZ

Dy, = fh(v—V)(v— V)dz

M. = OH7w | OHTy _ vertically-integrated lateral stress gradient
ox oy

M, = ag;xy + a[;;yy = vertically-integrated lateral stress gradient

15



¢
B.= I \ b.dz= vertically-integrated baroclinic pressure gradient

¢
B,= J. \ b, dz= vertically-integrated baroclinic pressure gradient

b,=g— | ——dz = baroclinic pressure gradient

0 J'ﬁ(P—Po)
x: p,

by=g %f@dz = baroclinic pressure gradient

f =2Qsing, Coriolis parameter, Q=7.29212x107 rad s, ¢ = degrees latitude
p = time and spatially varying density of water due to salinity and temperature variations
p, = reference density of water

HrwHrt,=Hrt,. Hr,, = vertically integrated lateral stresses
Ts, Tsy = imposed surface stresses

Tix, Thy = bottom stress components, suitably defined, e.g., using a linear or quadratic drag law
P, = atmospheric pressure at the sea surface
n = Newtonian equilibrium tide potential

E, = vertically integrated lateral stress coefficient (often called the horizontal eddy viscosity)

Evaluation of the momentum dispersion terms requires knowledge of the vertical profile of the
horizontal velocity. This is available only from a three-dimensional model solution utilizing the
three-dimensional momentum equations described in the next section. Consequently, the
momentum dispersion terms are retained only in the GWCE for ADCIRC-3D. In ADCIRC-
2DDI, they are assumed negligible and dropped from both the GWCE and the momentum
equations.

The vertically-integrated, lateral stresses, Hr,.,Hr,.= Hr.,Hr,, , derive from time averaging

the advection terms in the momentum equations. They are due to high frequency fluctuations in
the flow field that are not explicitly included in the model solution and they have no absolute
relationship to the time averaged variables that are solved for. Rather, they must be
approximated using a closure assumption. It is usually assumed that their significance is small
compared to the other terms in the momentum equations, yet in practice most models depend on
these terms to stabilize the numerical solution. While the use of a diffusive-type expression for
these terms is standard, the exact form is equivocal.

16



The original version of ADCIRC represents these terms in the momentum equations as:

oU oU
ox oy

2.3)
oV oV
HTxy:HEh_ HTyy:HEh_
ox oy

Several alternative expressions have been added to more recent version of ADCIRC (version

44.15):
0 0
Hz-xx: Eh Qx Hz-yx: Eh Qx
ox oy (2.4)
00, 20, '
and (version 44.XX):
0 o0, 00
Hr.=2E) 9. Hr=E, 0., %
ox oy  Ox 2.5)
Heo =4 22 L Hr, =2E 00, |
T ! oy Oox tw ’ oy
oU ou orv
HTxxzzHEh_ HTyx:HEh —-_—+t—
ox dy Ox
(2.6)
ou ov oV
Hro=HE) —+— Hr,, =2HE,—/—
oy Ox oy

Egs. (2.5) and (2.6) are conceptually more attractive than Eqgs. (2.3) and (2.4) because they
maintain the theoretical condition that z,,= .

The buoyancy terms can be simplified from the form shown above by recognizing that there is
no z-dependence in a 2DDI model and using Leibnitz’s rule. Thus we can integrate these terms
in the vertical:

17



(P2=P,) ¢ H 0 (Pr=p,)
P, ox 2 oOx P,

(pZD_po)a_é,_’_Ei(pZD_po)
P, ¥ 20 p,

where p,, represents the vertically constant, depth-averaged density that is represented by a
2DDI model.

ADCIRC-2DDI utilizes a generalized slip formulation for the bottom stress term:

T bx Kslinx Thy Ksliny
=KapU =——3 —=KupV =——F——
p, H p, H
where,
Ky, = constant, = linear slip boundary condition, (K y;,= linear drag coefficent)

Kap=CNU?+V?, = quadratic slip boundary condition, (C, = quadratic drag coefficent)

The weighted residual method is applied to Egs. (2.1) or (2.2) by multiplying each term by a
weighting function ¢, and integrating over the horizontal computational domain €. Thus the

momentum equations become in non-conservative form:
oU oU oU o[¢+P,/gp,—an)
—p )+ U—,0 )+ (V—'0.)—(fV,d.)=— ; 0.
< ot ¢]> < ox ¢J> < oy ¢]> <ﬂ/ ¢j> <g Ox ?,

Tox KapU M. _ /B«
+<Hpoa¢_/>_< 1P, ’¢j>+<H ’¢_/> <H’¢-/>

0 . -
<8_Va¢j>+<U8_V,¢j>+<V2_z,¢j>+<fUa¢j>:_<g [§+Pé/gpa an]’¢j>

2.7)

ot ox oy
Tsy KslipV My By
+ Q. )~ ————,0 . )+ Q. )—{—,0 .
<Hpo ¢f> <Hpo ¢f> <H ¢f> <H ¢f>

and in conservative form:

18



00, oU Q. Q. \ | o[¢+Pr/gp,~an]
<az ’¢f>+< ox ’¢-">+< oy ’¢’> (10,)= <gH ox 9

¥ <,To ,¢_,.> —<KS;’;Q’“ ,¢_,-> +(Mo9,)-(Bo,)

00, ouQ, oo, _ 6[§+Ps/gpo—a77]
R e

g e

(2.8)

where, the inner product notation < > is defined by Eq. (1.10).

Integrations in Eqs. (2.7) and (2.8) are carried out using one of two basic integration rules as
noted in the text. These rules are described in APPENDIX - BASIC CALCULATIONS ON
LINEAR TRIANGLES.

Term by term integrations of Egs. (2.7) and (2.8) are presented below (only the x-component
equations are presented as the y-component equations are fully analogous).

Integration of the transient terms in Egs. (2.7) and (2.8) utilizes Rule 1:

U 4 _Axe; 0U;
o’y 3 ot

00, 4\ _Aw; 99
o/, 3 ot

Integration of the advection terms in Eq. (2.7) utilizes Rule 2 and assumes the un-differentiated

A _ 1
terms are elementally averaged (i.e., [/, = EZU i» V= EZ Vis)
i=1 i=l

oUu . oU YA (Y v |
<[UE+VE]’¢’>Q_; 3 {U( ox )n+V"( o )]

Two different integrations have been used for the advection terms in Eq. (2.8). Version 1 uses
Rule 2 and a linear expansion in space for the conservative flux terms UQ,, VQ,:

19



oUQ, V. | .\ _NA|(oUQ.\ [V,
<( x dy ]’¢’>Q 213[( Ox )+( dy ”

Version 2 expands the advection terms with the product rule, utilizes Rule 2 on the derivative
terms and assumes the un-differentiated terms are elementally averaged:

UQ, VO, \ S| (20.) - (22.) 15 (V) .5 [~
<[ o o ]’¢’>Q % !U( O )nﬂ/"( oy ),,+Q”( ox )n+Q““”( oy )]

Integration of the Coriolis terms in Egs. (2.7) and (2.8) utilizes Rule 1:

<fV’¢f>Q :%Wj

_AN

(ro.s,), =510,

Q

Integration of the combined barotropic pressure (i.e., the free surface elevation, atmospheric
pressure and tidal potential) gradient terms in Eqs. (2.7) and (2.8) utilizes Rule 2 and assumes
the undifferentiated total water depth term in the conservative form of the equations is

3
elementally averaged (i.e., H,= %Z H):

i=1

o - &g 0 -
<g [¢+PJ/gp,—an] ¢_,.> Y ( Ll +Ps§pa Om]j

o[g+pr/ep,~an] \ & 4,q,[(0[¢+P/gp,~an]
<gH ox ,¢j>g—;g 3 ( ox n

Integration of the surface and bottom stress terms in Egs. (2.7) and (2.8) utilizes Rule 1:

T sx ¢ _ KslipU ¢ — ANEj T sx _ KslipU
HP W\ HP T 3 I (HP)  HP ),
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Ts K0, Al (70| [ KanQ.
<p0’¢j>g_< HP, ,¢j>g_ 3 [('DOJI [ HP, J;]

The vertically-integrated, baroclinic pressure gradient terms in Egs. (2.7) and (2.8) are assumed
to vary linearly across an element. Integration of these terms utilizes Rule 2:

B. =§An(3xj
H ", S3\H)

The lateral stress gradient terms in Eqs. (2.7) and (2.8) are initially integrated by parts to
eliminate the second derivatives of flux or velocity that result from the lateral stress closure:

Mx 1 aH XX aHT )X
9;) =7 — = 1.9,
H o \H| ox oy o

o9, o9, E, OTx
= x0 ~ | 5o - o~ | o +|—— dr
<HT 6x(Hj>Q <HTV ay[H iH an

(0= | o= 2 )

Oy

6¢j 8¢]. OTx
=- T o - o A + - dar
<H2'xx o >Q <8Hry o | th N g

T

where I" represents the external boundary of the computational domain. In both cases we assume
that the lateral stresses are small along all external boundary segments and therefore that the
boundary integral term can be neglected. In addition we replace the depth by the central nodal
depth and assume that the lateral stress is spatially constant across an element:

M, I 09, 09,
s = An H xx_+H X A
< H ¢]>Q HJ' "Z:; [ ‘ ox o ay n

NEy 0¢ . 0¢ .
<Mx7¢j>9 = —; A{erxa—x“rHTyxa—le
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Following integration and multiplication by 3/ 4 NE the non-conservative Eq. (2.7) becomes:

o[&+p,/gp,—an )]

NE; U B :_LNE,-
ZA [Un( ox )n+Vn( oy ) ] g ANEjnZ—I:An( ox l

8t ANE] =l
T sx KslipU 3 & ( a¢ a¢j ] 1 Ak ( Bx j
+ - An| Htw—+ H7 - A
(Hpol [ HP, j HANEJ,,Z‘ o oy ) 24 )
ov,, 1 ¥ v NEf 0| ¢+P/gp,—an
ot ANEj n=l 6)6 ; ay NE j n=1 oy .

. KV 3 99, 99, 1 & (B
+ Ty - lp ZA {Hz-xy +Hz-yy ZAH _y
HP, ; HP, HANE/nl Ox a ) ANEjn=1 H .

the conservative Eq. (2.8) for version 1 becomes:

an,jLL%A{(ﬁUQX) +(0”VQX)]ny'_

ot ANEJ n=l1 ox 6y
g %A 8[4+Pv/gpo_an:| +(&j _(Kslinxj
ANE] n=1 ax ; po j H j
3 N 0¢ . 0¢ . 1 &
- ZAn[HTxx ¢] +HTyx ¢JJ zAnBrn
H ANE, n=l1 ax 6y n ANE] n=1 (2 10)
o0, NE; .
yj+ 1 ZAn (ﬁUQy) + é)VQy _}_fo.:
ot Anej n=1 ox /, oy ., !
g %A o[¢+P./gp,—an] +[&] _[Ksﬁpr]
ANE/ n=l " ay n Po J H J

NE ; 8¢ 8¢ 1 NE ;
ZA [HTX)’ a ’ HTyy ay/jn - ZA”BJ’n

H ANE/ n=l NEj n=l

and the conservative Eq. (2.8) for version 2 becomes:
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5Q NE, 20 - (0”(]) . )
ot ANEjnZI:An[Un( ox )n-’_V"( ay )n+an E n+an y nyj_

g & o[¢+p/gp,~an]) (. _(KWQX)
e, 2 [ Ox lJ{p”jj H ),

AN j n=1

3 0 o0p 0¢ 1 Y
- ZA (H'[xx ! 2 ’ - ZA”BX"
H jAng; =21 Ox Yy ), Ane;

6Qyj NE Qy _ ﬁQ} — ouU _ oV ~
ot +ANEJ;A[ ( ox )n+V"( ay ) +Q}’n(§)n+Qy,, E n +foj_

n

- NE] 5|:§+P5/g,00—0{771 Ty | Kshpr
e, 2 ( oy ]f[f’ol[ H l

2.11)

ANE j =1
NE ; a¢ a¢ 1N
An HT_x +HT AnB n
H ANE,; ( " ox v oy J ANE_jnZ=1: g

As noted above, early versions of ADCIRC-2DDI used an approximation to the exact integration
contained in integration Rule 2. If integration Rule 2a is used instead of Rule 2, the non-
conservative Egs. (2.9) become:

%Jr;%!m(w) +Vn(aU)] -t %(a[ﬁﬂ/gpo Om]]

ot  NE, ' ox oy NE ;"5 Ox
. NE o . oo . NE
+ T sx _ Kslsz . 3 Z Hz-xxﬁ n Hz-yxﬁ . 1 Z(
HP,) \ HP. ) H,NE;’" Ox 9 ) NE,;=

o, 1 & ov g Ni[olg+Pigp,~an]
el@) o f) e B

t NEJHI NE]nl ay

Ts KsiV 3 e a¢ a¢ 1 g B;
+( > ] —[ i jj— Z(ery = '+ Hr,, 6] n - E) n

Hpo j Hpn HjNEjn:l NEjn:l

)

(2.12)

The formulated using approximate integration Rule 2a for the conservative equations is not
presented.

Equations (2.9) - (2.12) present four spatially discretized, vertically-integrated versions of the
momentum equations that may be used to solve for velocity at horizontal node j. A two level
time discretization at the present (s) and future (s+1) time levels is described below (only the x-
component equations are presented as the y-component equations are fully analogous):

23



US'+1 _ Uj

Non-conservative transient term: J A
t
s+1 K
. . Qx ‘+ - Qx 1
Conservative transient term: #
t
NE;
Non-conservative horizontal advection: z A\ U, +7,
ANE/ n=l1 n

‘ ) ) . 1 NE ; aUQ s
Conservative horizontal advection, version 1: z A )+
ox /,

ANE j n=1

Conservative horizontal advection, version 2:

Ly, [ ]v(””Qj - [ﬁ—UJ 5 (ﬁj
ANE],,I ) n ay ) an ax ., an ay .

. co 1 o+ s
Non-conservative Coriolis: E( e 4 j)

. . g 1 s+1 s
Conservative Coriolis: 5( fo . fo y‘,-)

Non-conservative barotropic pressure gradient:

NE; _ s _ s+1
LS g +pr/gp,—an]  o¢+P/ep,~an]
Ayg; v 2 Ox Ox )

Conservative barotropic pressure gradient:

1% 4| d¢+r/gp,—an] L d¢+P/gp,—an]"
ANEjnZ_;g 5 [Hn = + H, ox
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s+1 TS
SX j SX j
J + J

H'p, Hp,

: 1
Non-conservative free surface stress: —

s+1

S
. ot
Conservative free surface stress: —| —2 + —Z
Po Po

) KY[ ) US‘+1 US‘
Non-conservative bottom stress: — 2| 7 4 2

s+1 s
H; H;

Conservative bottom stress:

s+1 s
H] Hj
1 M B §
Non-conservative baroclinic pressure gradient: z An( "J
NE j n=l1 H n
1 NE ;
Conservative baroclinic pressure gradient: Z AuB.,
NEj n=l

, 3 o o
Non-conservative lateral stress: —Z A, HrS, d +H7), 9,

H;ANEJ n=l1 ax ay
' 3 N 0¢ ¢,
Conservative lateral stress: Z An| Ht %, +HT %,
NE ox vy )

These time discretizations are substituted into the spatially discretized equations, multiplied by
At and grouped at time levels s+1 and s, to yield the fully discretized equations.

Non-conservative, exact integration, (Eq. (2.9)):
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[1+

tKilipj ] Us+1 fAt

A
1+

i Vs+1 —
2H;»+1 J 2 J

Athz NE; U* s At §
1=y - S, Un( ) v U 20
2H; AN j n=1 ox /, oy " 2

2ANEj n=1 Ox Ox
At| i T Ny 5¢ , 09,
+7 s+1 + s ZA yx a
Hi'p,  Hip,| H ANEf -l Y

Af NE, Bx s
) ZA”(Hl

Anej =l

gAt %An(a[ﬁps/gpoan]s N 5[§+Ps/gp00!ﬂ]f+1}

VJ UjJrl —

Amep,] oo L

2H§'+1

1_ AtKS[le ] %A _S'( 6V ) VS a_VY _ Atﬂ]j
2H;+1 ] ANEI o a ) n ay ) 2
g %A ds+r/ep,—an] ¢ +p/gp,—an]”
2ANEj n=1 ’ 5y ay "

s+1 s
Atl To. Iy NE; 09, , 09,
+— A ZA [HTW Ty —"
2 H'p, Hp, H ANE, n=1 Ox oy

A0

ANE,nl
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Conservative version 1, exact integration (Eq. (2.10)):

[1+ AtK;,hp‘,] o S

2my |72 Y
AtKjl . NE ; § ’ s+
iy w0 (o0, g
2H T A, ox ), » ), 2 '
B s+1
gat & | _ dS+pr/gp,—an]  _ . d{+P/gp,—an]
_—z An Hn + Hn
24, S Ox o
s+l' 3 ) NE 8 ; a j
fAU Toy Ty | O ZAn[Hrixﬂ"'HfixﬁJ
2 po po ANE./ n=l ax ay n
At A s
———> A.B.,
NE j n=1
AtKili . s+ At s+
1+ s:j Qyjl+f_ xljl:
2H 2
N S P §A 0ug, Y (org,Y A
2Hj‘+l Y ANEj — " ox ., ay , 2 *
s s+1
ght & [ og+p/gp,—an] . d¢+P/gp,—an]
_—Z An Hn + Hn
2ANEj n=1 ay ay n
s+l s NE ;
Ty T, 4 o, ¢,
+£ i N Vil 3At ZAn[HTiy ¢/ +HT;yﬂJ
2 po po ANE]' n=1 ax ay n

Ar VE .
- > A.B,,

AN j 0=l
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Conservative version 2, exact integration (Eq. (2.11)):

1 AtK;lipj s+1 fAt s+1
e Cor =5 %

AR 3 | % ' 0 _.(ouY _ (ovY
2 o)) ]2
2H = ] ¥y ), x ), ),
fAt s+1
30
K s+1
ZANE]nl ax ! ax
s+l K . .
At T T | 3Ar [ L0, 8¢,~j A
+ + - An| Htow—— 1+ H7T - AuB,,
2l:pn p0:| ANEj; 8x ” ay n ANEj;
1+ AtKilin Q s+1+fAl s+l
oH | 2 T
AR | o At N | (00, _[(20,Y _ . (oUY _. (ovY
1-——£10, - DA|T |+ | + O (—j +0,. =
2HS 7 Awg; ox ) a ) “\ox ), T oy ),
fAt s+1
- 2 ij
s s+1 215
S Actpigp,man] | oondEtPogp,man] 1)
2ANE/?11 ay " ay
s+1 s
At| To;  Tw; | 3A1 H [ 09, 8¢j -
+— +— |- A, Hr)y—-+H7} B "
Zlipo ,00] NEj; " ox yya NEJ; g
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Non-conservative, approximate integration (Eq. (2.12)):
ALK Gy
1+ Slj.l U;H_ fAt V;+1 _
2H 2

1_ Athlipj USA— At % 175( aUS) +Vs aUS 4 Athj
2 |7 NE;E| T N ), e )| 2
K s+1
gt Gl dc+pgp,—an] < +p/gp,—an]
2NE,; %5 ox Ox

s+1 s
At Ty T, At H op o¢
L2t L —L |- 3; d Z(Hrffx ¢’+Hr}x ?,
2 H;Hpo Hb]po HJNE/ n=l ax ay n

_ﬂNE"(&T

NEj n=1 H n
ALK iy

!1+ ‘lp]]VSH + fAt U;Jrl —

215" |2

ALK Gy . At & _ s _
-l Sl 2) o

2H;’+1 NE] n=l1 a.x

s

o) |_ MU
v/, 2

 gA %(5[4 +p/gp,—an] ¢ +Ps/gpam7]s+l]

2NE,; %5 Ay oy (2.16)

s+1 s

Ty, Ty NE; 0p . 0¢ .

+£ SRR ?At ZEHriy ¢’+Hz'iy ¢jj
2\ m'p, Hip,| HINE;'S Ox » ),

_ A ”E’(Byjs
NE] n=1 H n

Each momentum equation discretization requires the solution of a 2x2 matrix at every node j in
the model domain. This is accomplished in ADCIRC-2DDI using Kramer’s rule.

The original version of ADCIRC-2DDI uses the non-conservative, approximate integration
presented in Eq. (2.16). The other formulations have been added as of ADCIRC version 44.15.
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3.0 3D MOMENTUM EQUATIONS

ADCIRC uses the shallow water form of the momentum equations (applying the Boussinesq and
hydrostatic pressure approximations).

ot ox oy oz Ox az\ p,
6 ) —
v u@v v@v v =-g [c+P/ep, an]+ 2 (sz]—by+nw

0 ‘ _
Ou u@u V@u W@_u_ V=—g g+ P/gp, m]]"‘a(rnj_b)ﬁmx

(3.1)

o ox Oy 0z oy 0z

P,
where,

u, v, w = velocity components in the coordinate directions x, y, z

T zx au .
= E,— = vertical stress
P, 0z
Toy ov :
= E,— =vertical stress
p) oz
E. = vertical eddy viscosity
= Q(E a—uJ +i E 8_u = lateral stress gradient
" o P o oy é&y &
= E(E @j Jri E Q = lateral stress gradient
o P ax oy é@y &
E, = lateral stress coefficient (often called the lateral eddy viscosity)
b.= girwdz = baroclinic pressure gradient
ox=:  p,
b,= gai gwdz = baroclinic pressure gradient
yeE P,

All horizontal derivatives in Eq. (3.1) and the accompanying definitions are computed in a level

(Y1)

or “z” coordinate system. ADCIRC utilizes a generalized stretched vertical coordinate system
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Figure 1. Schematic of level and stretched coordinates

(3.2)

a:a+(a1;bj(z—é)

o—a
Z—(a_ij-i-C

(Figure 1) in which the vertical dimension is transformed from z, ranging from -4 to ¢, to o,
ranging from b to a, where b and a are arbitrary constants. (Most models assume b=-1, a=0.
ADCIRC assumes b=-1, a=1.) While ADCIRC uses the variable ¢ to represent the stretched
vertical coordinate, a traditional “c” coordinate system implies that the nodes are spaced

uniformly over the vertical at any given horizontal location. ADCIRC does not carry this
limitation, but rather nodes can be distributed over the vertical in any manner desired.

(3.3)

Using the chain rule we can relate derivatives along level (z) surfaces to derivatives along the
stretched (o) surfaces:

i_i__(”—bjﬁ{f’—“jﬁ_i
ox. Ox, |\a—-b)ox. \a—b)ox. |0z
0 _90 (”_bJ£+(0_a]% 9 (3.4)
oy. oy, |[\a-bj)oy, \a-b)oy, |0z
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where for clarity, o subscripts have been used on the horizontal derivatives computed along the
stretched surfaces in Egs. (3.4).

Considerable discussion exists in the literature regarding the generation of spurious circulation
due to the use of stretched vertical coordinates. Most of this attention has focused on problems
arising from the baroclinic pressure gradient terms and to a lesser extent the lateral stress terms.
In ADCIRC we apply the stretched coordinate system to all but the baroclinic pressure gradient
terms resulting in the following transformed momentum equations:

ou ou ou (a—bj ou
—+u +v + We —=fr=
ot Oxo. Oy, H oo
P _ _
LTS NELLTEA R
* AN (3.5)
ov ov ov (a—b] ov
—+u +v + We —+ fu=
ot OXo 6y H )oo
o|g+pP,/gp,—a -b) 0 (.
-8 [g [gp 77]+(a ]— Iz —by,*tm,
oy H )oo\ p, “

Note that the first term on the right hand side of each equation is not a function of depth and
therefore horizontal derivatives in level coordinates are identical to horizontal derivatives in
stretched coordinates.

Introduction of the stretched coordinate system in the advection terms produces similar-looking
advection terms in the stretched coordinate system, Egs. (3.5), provided a stretched-coordinate,
vertical velocity, w,, , 1s introduced that is related to the true vertical velocity by:

B e R e e
a—b) ot a-b)ox \a-b)ox a-b)oy \a—-b)oy

ADCIRC does not formally transform the lateral stress terms (m,,m, ) in Eqgs. (3.4) to obtain

equivalent terms in Egs. (3.5). Rather, the original lateral stress terms (along horizontal
surfaces) are approximated as lateral stresses “along stretched surfaces”, i.e.,

-9 (E( Cu j+ 0 (E@ Ou j: lateral stress gradients along stretched surface

v, o, 37

my = 0 [ E, a&v J-‘r 86 [ E, v j = lateral stress gradients along stretched surface
e xo‘ yo’ yo‘
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The generation of spurious circulation because of this assumption has also been discussed in the
literature. ADCIRC uses the lateral stress gradient terms purely to dampen numerical noise in
the solution and therefore assumes a lateral stress coefficient that is as small as possible. This
should minimize the generation of spurious circulation by these terms.

The weighted residual method is applied to Egs. (3.5) by multiplying each term by a horizontal
weighting function ¢, and integrating over the horizontal computational domain € and then

multiplying the result by a vertical weighting function y, and integrating over the vertical

domain, Z. By constructing the grid so that the vertical nodes line up vertically beneath each
horizontal node, the horizontal and vertical integrations can be performed independently.

(ohe eI} ) A,

o|¢+Ps/gp,— -
[t elael),
_<<bx9¢j>g’wk>z+<<mn;’¢j>g’l//k>z

[/, ol¢+P/gp,—an] a-b) 3 [z, 1.9
<g oy ’¢j>g’% Z+ <( H j%[po]’¢’>g’% o

_<<by,¢j>g,wk>z + <<my6’¢f>g’l//k>z

Horizontal integrations of each term in Eq. (3.8) are presented below (Eq. (3.9) is fully
analogous) and are carried out using one of two basic integration rules as noted in the text.
These rules are described in APPENDIX - BASIC CALCULATIONS ON LINEAR
TRIANGLES:

Horizontal integration of the transient term in Eq. (3.8) utilizes Rule 1:

au ¢ _ANE,- %
a?) ) T e
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Horizontal integration of the horizontal advection terms in Eq. (3.8) utilizes Rule 2 and assumes

. . . . 1$ 1<
the un-differentiated velocity terms are elementally averaged (i.e., 7, =— zu ;andy, = gzvi ):
i=1

i=1

Ju  Ou o A ( ou j ou

u +v— .9 , = | U — +\7n D N4

<<( ox, 0y, ) ¢">Q l//k> Z‘ 3 |: Oxo ), W, ), ’
V4 z
Horizontal integration of the vertical advection term in Eq. (3.8) utilizes Rule 1:
a-b|ou 6 ) v, ) = Aye [ a—b ouj v
U e )7 ) T e N\ ae
z

Horizontal integration of the Coriolis term in Eq. (3.8) utilizes Rule 1:

(o), =),

Horizontal integration of the combined barotropic pressure (i.e., the free surface elevation,
atmospheric pressure and tidal potential) gradient term in Eq. (3.8) utilizes Rule 2:

d[gs + P,/ p,—agn] _ [ &, 9[¢+pr/gp,—an]
< ax ’¢j Q:l//k nZ:l: 3 g ax n:l//k ,

Horizontal integration of the vertical stress gradient term in Eq. (3.8) utilizes Rule 1:
a-b) 0 Tz _ANEj a-b 0 Taxj
~ D ¢/ > l//k - 3 ~ b l//k
" )oo\p,) H; )\oo\ p,
Q 7z Z
Horizontal integration of the baroclinic pressure gradient terms in Eq. (3.8) utilizes Rule 2:

<<bx,¢,>gawk>z=<§%bwwk>z

n=1

Horizontal integration of the lateral stress gradient term in Eq. (3.8) initially utilizes integration
by parts
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_ P ou 0 ou
<<m””¢j>9,l//k>z <|:axO- (E/ 6x6j+ ayo [E// ayGJ:l’¢j>Q,l//k

[ NE a ) 6 '
- J'E( Ou , Ou ¢JdF_ZJ.E/f du ¢,+ ou 09, a9y,
5 \Oxe Oy, oo \oxeox oy, Oy

Z

[ NE, 0 0
_ jEk(a—”+a—”]¢jdr—Z( ou 09,  ou ¢_/] jEde]»%

8)60 &ya n=l1 axo‘ ax aya ay Qn

where, T, = external boundary segment of element n. The term is further reduced by assuming

that the lateral stresses are zero along all external boundary segments and by lumping the lateral
stress coefficient

Mixss J Q’ k 7 /jn:1 " axo— ax a.VO' ay n A

Thus, following horizontal integration and multiplication by 3/4

z

Egs. (3.8) and (3.9)

NE ;?

become:

ouj 1 & ( ou j ou a—>b < ou; >
, +— An| Wa| — +Vn ~ B + oj . 5
o Vi ANEj ”Z::, v, ). . n Vi Z H, Wo 2o Vi )
z

_ 1 & o|¢+Ps/gp,—an a=b |/ 0| rx;
_<ij,l//k>Z__A ZA"(g [ éx ]J Wy +( j %(Tp]],wk (310)
n 7 ¢ VA

H;

- <§Ab '//>‘ (g ya) L, BB,
ANE./_ - nOxn> ¥ k § ANEJ- /jnzl n axo_ P ayo_ ay ” sV k

z
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ffA{ga[mpséipn—an]j% [ a-b a(w,
n Z

1 /g 3 ¥ [ ov ¢, ov 0P,
- ZAnbynal//k - E(Q/ZA” + al//k
A n=1 , A,
n z

NE j n=1 Oxs OX ayo— ay

A standard one-dimensional, Galerkin FEM discretization is used in the vertical, yielding the
following integration rule,

O Ok
Yk _[ WiV do+ Yy _[ v, do k=NV
O k-1 O k-1
Ok O+l O k+1
<Y>‘//k>ZE = I Wi do+ Yy j W do+ Y I VW, do I<k<NV
Ok-1 O k-1 Ok
O k41 O i+
Y '[ VWi do+ Y '[ ViV do k=1
Ok O

In shorthand notation this can be written as:

3
<Y, ‘//k>Z = Ydnmy  + Y ilnmia + Yiealnmy s = Z Y ksm—2dnM i

m=1

where,

w , = vertical weighting function, =1 at node k, =0 at all other nodes,
varies linearly between adjacent nodes

k =1 at the bottom

k = NV at the free surface

NV = number of nodes in the vertical
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N 1 ¢ Ok~ Okl
I, = j y/k—ly/kdo-:E _[ l//kl//kdo-:T fork#1
’ O k-1 O k-1
0 fork =1
Inmis>=2(Inmi,+ Inmy3) (3.12)
o 1 o Okt1” Ok
_ J. ViV, do=— I W, do=——"— Jor k#NV
Inms;= o 2 o 6
0 fork =NV

Note, that the definition of the weighting/basis function y/, reduces integration over the vertical

domain Z to integration over only the two vertical elements containing node £, i.e., from node
k—1 to node k+1. Also, because the basis functions are linear in space, their derivatives are
constant within an element and can be pulled out of elemental integrations.

Vertical integration of the transient term in Eq. (3.10) yields

6u,~

Ead

3
OU j k+m=2 I
— ~  1Inmin
~ ot

zZ

Vertical integration of the horizontal advection terms in Eq. (3.10) yields
1 ou ou
(D 4 ﬁ(—} +v — | |
ANE . n=1 aXa n ayo- n
J

1 23 Y Ou Ou
= E An _n +_”’ lnm o
ANE/ m=l1 n=1 [u (aXU n ’ ayo‘ '
. n k+m—-2

Vertical integration of the vertical advection term in Eq. (3.10) yields
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—b a—>b Ok Ok
( H; j<waja ( ) Wo j -1 J‘ Wil ia do +yp, 4 j yw,do
J

k-1,k

O k-1 O k-1
O i+l O ksl
a-b i 4 k+ p
Wo jik I ViV do+ s _[ ViVindO
k K+l o o

ou ou;
j{(a_j Wo ikt 2Waj,k) Inmy, + (6_;] <2Waj,k + W(,j’kﬂ) Inmy 3
k,k+1

where
Ou, _ o, oy, Uk T Ujk-
o) T\ e | M g oo
a k-1k o k-1,k o k-1,k Ok~ Ok-1
Ou _ oy, O 1 _ Uk T Uk
) =Ujk 2 tujin P =
o k,k+1 o ko k+1 o k k+1 Ok+1— Ok

Vertical integration of the Coriolis term in Eq. (3.10) yields
3
<fv ¥ k>Z =2V ema I
m=l

Vertical integration of the barotropic pressure gradient term in Eq. (3.10) yields

1 /& - 1 & o|¢+P/gp,—
ZAn[g a[g i PS/gpn CX?]]] Wi | = ZAn(g [é/ [gp 0”7]} LVny
ANE Ox ; , )

j n=1 ANE j n=l1 ax

where

Ok
W do_:O-k_O-k—l
k
O k-1
O f+1 _
Lvm=q | wdo=20 1<k <NV (3.13)
O k-1
O +1

| V,kw:@ k=1
Ok
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Vertical integration of the baroclinic pressure gradient term in Eq. (3.10) yields

1 NE; 1 [
ZA”bxn’ Vi - A Z ZAnbxn ]l’l”l’lk,m
z k+m-2

Ane; \'3 NE j m=1{_n=1

Vertical integration of the lateral stress terms in Eq. (3.10) yields

3 & [ ou 09, ou 09,
- E i An ’ + ’ ’l//
n z

30 E [ ou 99, ou 09,
= 2 [E/jz An[ ! j+ ! ! Il’lmk,m
n=l1
n dktm-2

ANE]' m=1 aXO' ox 8_)}0- 8_)}

The vertical stress gradient term in Eq. (3.10) is initially integrated by parts, yielding

a=b |\l 0 [z, _[a=b |ty a—=b |7, a=b\/zr., oy,
ool p V) U H, )Pl L H, )Pl U H, "9
H; o\ P, , j k=NV j k=1 j p, 0o [,

where the free surface stress, zsx; (applied only for k=NV’) and bottom stress zs; (applied only

for k=1) have been introduced. Expressing the vertical stress in terms of the vertical gradient of
velocity in the remaining integral term, yields:

r2; OY, \ _[a=b < Ouy 5%> _
p, 0o /[ \ H, E:ioe 00 ,

Wi | . [OWs o, ajk do+ Ojk do
Ujk-1 Py ik Ujk Py ik Py ek E:jia Vi E:jx Vi

O - O k-1

oy, OV 1 oy, o o
+ ) a5 + Ui = — A do+pg. . do
[u]’k( oo jk,k-H o 1( oo ke ke+1 do e k+1 EZj,k j Wk EZJJ”I '[ l//k+l

O Ok

or in shorthand notation

zX j a-— b X
L% = Dt KVim i
p, Ooc , Hj )ma
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where

al// al// Ok Ok
k-1 k
( o j ( o j Ezj,k—l J‘ l'”k—ldO-+Ez_j,k J‘ l//kdo-
G Jka1p\ 90 Jpix i i
oy, (ov, ¢ N
) === - , do+p . do
:_Ezj,k_'_Ezj,k—l for k #1
2(0‘k - O'k—l)
0 fork =1

KVim o =—(KVami, + KVimy3)

al//k 1 al//k O j+1 O k+1
= . do+rp do
( oo ko k+1 oo ko k+l By I i Bt j Vi

O O
_ 6l/jk awk o-k+1 O-k+1
KVnmjua=q _( oo jk k+1( do kk+1 Bz o-!. Vi do_+EZj,k+1 o.!‘ Vin do
, , . .

R .
:_Ez‘/,k+1 EZ‘/,k for k= NV (314)
2(0k+1 _Gk)

0 fork=NV

ADCIRC utilizes a generalized slip formulation for the bottom stress term:

Thxj Thy ;

_]:Kslipjuj; _J:Kslzijj

where,

K siip ;> © = no slip bottom boundary condition

K ip; = constant, = linear slip bottom boundary condition, (K stip = linear drag coefficent)

Kip; = CanJu 2+v7, = quadratic slip bottom boundary condition, (C, = quadratic drag coefficent)

In final form, the vertical stress gradient term is:
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Thus, following vertical integration Egs. (3.10), (3.11) become:

i@uj,mm—zl + z %A ( j 0”14 I
nmk.m Un Vo Nk m
= ot NEj m=1| ot 0xs ), ﬁya ol
a-b auj 8uj
+( H, ]{[gjk.hk(waj’k_ﬁ-zwaj’k)lnmk’l " (E]k,kﬂ(zwaf’k—i_Wf’f’k*l)lnmkﬁ}
N 1 & o[¢+p,/gp,—an
_vaj,k+m_2]l’m’lk,m == ZAn g [ / ] LVny (3.15)
m=1 ANE ; n=i ox .
a—>b |1, a-b a->b
+ ! T (U KSI[ i U jk+m— KVnm m
[ Hj J P, N ( Hj } /‘k:I P j [ H, J mz; Jok+m=2 Jok,

ANE m=1| n=1 NE] m=1 =1 axo’ ax ayo- ay

J

NE; 3 NE,; 0o . 0¢ .
Z{ZA bxn} Inmgn— Z[ ZA,{ 0u Y, ou ¢’J } Inmim
k+m—=2 M dk+m=2

3 NE
z@v; Je+m— ZIanm Z ZIA {1/—[ (8 j —n(j_‘)] } Inmi m
Xo n n

m=1 NE j m=1 n=1
/ 7 k+m-2

a-b 6VJ 6\/]’
( H, j|:(ao_jk-1,k(WU],k—l 2wa,,k) N (ao_jk’kﬂ(zwabk W(,j,kﬂ) nmk,z}

+qu] k+m— 2b’lﬂ’lkm = _—Zj ( [§+PS/gp0_an]J LVni (316)

NE j n=1 oy

a-b a—b
k=NV _(?} vj|k:lKShpj ( H; } ZV} o R

+(a_bjrsyj
Hj po _ j J m=1

g 30 E ov 09. oy 09,
z{zA b} e z{E,jzA{ LN
k+m-2 n_kem—2

NE j m=1| n=1 NE j m=1 n=1 aXO' 6x ayo- ay

Equations (3.15), (3.16) present the spatially discretized solution for velocity at horizontal node j
and vertical node k£ used by ADCIRC 3D. These equations are discretized in time using a two
time level scheme at the present (s) and future (s+1) time levels as described below:

s+l

3 s
. Ujk+m-2" U jk+m-2
Transient term: E LR Tl
m=l1 At

[n”/’lk,m
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: . I v ou’ Ou’
Horizontal advection: —Z Z Al — | +v3 Inmym

A NE j m=1]1 p=]

Vertical advection:

a->b ou’ o’
[ s ] (’) (Wé_/,k71+2w§_/,k)lnmk,1 + (’) (2W§ff,k+Wfrj,k+1)Inmk,3
H oo fLk do Kkl

3
. o s+l K
Coriolis: § fl:alvj,k+m—2 + (l_al)vj,k+m—2:|1nmk,m
m=1

s+1

a—>b z_s+1 z_s
Free surface stress: ——| % 4 ‘s
R N
Hip, Hip, |

. s'+1 _ s
Bottom stress: (a —b)K:' ' dzujl i (1 0‘2)14«/
I Hj‘+ Hj k=1

Barotropic pressure gradient:

1 &y[ ds+prigp,—an]  ds+p/gp,~an]”
ANE,»; 5 [g > +g ox LVn,

3 s+1 N
Vertical stress: (a—b)2 Dl a; Lﬂn_i + (1-a; )M KVnm m
m=l1 (Hjﬂ) (Hj)

- . IERSIES
Baroclinic pressure gradient: Z [Z A.by, Inmm
k+m—2

NE ; m=1

J n=1

304 Y (o 9P, ou 09,
Lateral stress: EEY A, L+ ! Inmyn
e, ;[ f_/; {axa ox Oy, Oy Ao k,

Substituting these into Eqs. (3.15) and (3.16), multiplying by At and grouping velocities at time

levels s+1 and s yields:
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3 3
s+l s+1
zuj,k+m—2]nmk,m - Atz faIVj,ker—Z]nmk,m +

m=1 m=1

((a b)Ataszhp/J "
A

s+l ] k=1
H;

H

m=1 m=1

2
a-b < 1 3 3
a3 A D Y s KV ko = D aema It + A f (1= 00) VS eI
j m=1

(a=b)At(1-a,) K3y, . L 2
[ Hj D j uj k:l_ (1—0(3 )At aH; ;u;’kwn_zKVnm;’,k,m
Ar | M é’usj o
T An| )| — | T+ Vil T Inmim
ANEj m=1 ; {u (axo- n v ana " P e

a=>b | [ ou; . : ou’y : :
— At s . (W?rj,k—l + 2wfyj,k) Inmiy + | 52 (2wfyj,k + wffj,zm) Inmi s
H; O J bk do
+Af(a—b) o) L Ty }
k=NV

2 LH ', Hip,

k. k+1

S

NE 0 ] _ o ‘ _ s+l

ANE ; n=1 2 Ox Ox (3.17)

ANE ; m=1| = NE j m=1 n=1 Oxo Ox Oy, Oy

At S| 3t &) N s 09 s O
) z[zAnb;} = z[E;,zA{au )],
k+m-2 nlk+m-2
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3 3
s+1 s+1
Z Vj,k+m—2[nmk,m + Atz faluj,ker—ZInmk,m + =l

m=1 m=1

s+1
H;

[(ab)AtazKiﬁp,]
e

2
a b 3 3 3
- s+1 K _ K K
+os Al =— Z Vikema2 KVam' jgm = Z Vi kma Iy = Atz F (L= )it pma Inmi
H m=1

j m=1 m=1

J

{(a—b)At(l—az)Kiﬁpj] S

2
3
Vilea ™ (1-a; )A’( azb ) Z\}},kw-zKVnm‘},k,m

H Hj )
At 3 NE]‘ K N
g5 o) of 2] ]
ANEj m=1| p=1 axO- n aya n
k+m-2

a-b ov . , ov; ; )

_Af ; ovy (Wfrj,k—1+ 2W;j’k)]nmk’1 + | =2 (2Wi;j,k+ wfrj,k+1)lnmh3
H do k-Lk oo K+l

_ [ s+l s
+At(a b) Ty, N Ty, :|
k=NV

2 | Hp, Hp,

- 27 oy oy

ANEj n=1

At N { ’4}’! 6 é Ps gpo 683; ’ 6 é Ps gpo Ct”; -
g [ / ] g [ / ] Llnk
. (3.18)

At [ 30 | L (v 09, oy 09,
- A.b; Inmym— E).) Ax + Inmy.m
Z{Z ynlm_z k 2{ «,Z (6)&7 ox Oy, oy Ao k

ANEj m=1| n=1 NE j m=1 n=1
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Prior to obtaining the 3D velocity solution in ADCIRC, a complex velocity, g, is defined as
g=u+iv where i=+-1

and Egs. (3.17) and (3.18) are rewritten so that the x momentum equation is the real part and the
y momentum equation is the imaginary part of a single complex equation:

k=1

: + N (a—b)Al‘szKih. ) .
Zq,1:+m ZI”mkm+lAtf“129,/:+nz SInmim + [ Pj q 1

s+l J
Hij

3

2
3
+a3At(‘IZ_I.b) Zquler 2K[/nmjkm Z ke Zlnmkm—lAtf 1 a, quhm SInmim

m=1 m=1 m=1

(a_b)Al‘(l—az)K;‘ﬁ Al 2
( Hj D j q]',ﬁ (1 a3)At H/ ;q/k+m 2KVnm,km
Ar S| NE oq' (4°
_ An _i — | + _fl —2 I ”
ANEj ; nz:l: |:u ( axa_ ]n ' [ &ya Jn:| Kme2 o

a_b aq? s s aqq 5 s
—At( H; I:(O{)klk(W&/,k1+2W0j,k)ll’lmk,1 + (aof . l(zng,k-l-w;,_,,kﬂ)lnmk,;

At a_b TS+1 2_s z_i-%—l 2_5:

sx j sxj . sy sy

+ (a=b) L L
2 Hv Po  HPo Hi"Po HPo

k=NV

At 4, dc+Piep,—an]  d¢+pr/gp,~an]”
ANEJ-"Z‘ MK . +g ox LVny

. NE ; 6 ] _ 5 a . _ s+1
AL S A [$+P/gp,—an] i g [¢+P,/gp,—an] ]Lm

ANEj n=1 2 8y ay (319)
At |V
- Z|:ZA”(b +lb ):| Inmk,m
ANEJ m=1| n=l k+m-2
3Ar & (oq' 09, oq° 0P,
V/ZA q Iy q J Inmin
ANE! m=1 n=l Oxo Ox ayo— ay P
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Re-arranging and consolidating terms yields the form of the 3D momentum equations solved in
ADCIRC:

s+1

2
3 3
(1 +iAt fal) zqulm—zlnmk,m +a; At( ¢ b) quﬁklm KVnm5 jm
m=1 H

j m=1
N (a— b)Atathpj "
H;’H qj k=1
3
1-iAt f(1=a)))q' .0 — At[ladvec + Istress + bepg .t Inmgm (3.20)
= Jk+m=2 Jok+m=2 g

(a—b)At(1 —az)Kbhpj )

— Atvadvec,,— Atbipg LV — (1 —a; ) At vstressj’k_

=1

Hj

At(a—b ot T o Ty,
+—( ) jj/ +—% 4 +1/ + J
2 H'Po HPo | HY'Po  HPo

k=NV

where,

NEj aqs
ladvec ; x = A u +9°
" A Z u(a‘xo—Jrz (ayO']n k

a-b oq’ 8q
dvec = - 5 ik 2w i | 1 - 2wkt W ) I
vaavec i ( H; ] (60‘ )kl’k(w Jok—1 w ,,k) nMmp,1 (6 ( Wo j k™ Wo jk 1) nmr3

k., k+1
1N
bepg ;= —ZA,,(bingfvn)
NE j n=l k
o¢+p/gp,—an] . o[¢+p/gp,~an]”
ME{ g 4 ox ox
bipg = 3£ S
14NE/”1 +17 a[é/-i_PY/gpo_an] +6[§+P;/gpo—0ﬂ7]
oy oy
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Istress i =

3EY, Af ) oq’ 09, N oq" 09,
ANE' n=1 axo‘ ax &yo- 6.); n
J

k

2
3
s | ada— b s s
vstress jx = (—‘ Z 9 ; krm2 KV om
H

j m=1

Eq. (3.20) has a matrix structure, although due to the specific formulation that was used to obtain
this equation, the matrix is uncoupled in the horizontal direction and is tri-diagonal in the
vertical direction. Thus, Eq. (3.20) is solved separately for each horizontal node ;.
Symbolically, Eq. (3.20) can be written as:

Mg=F,
where,

M = complex tridiagonal matrix
q = complex solution vector for velocity

F, =complex forcing vector

M consists of:

2
M (k,k—1)= (L+idtenf) Inmis + @5 At( a—sf) KVnmj for k #1
b HJ
0 for k=1
2
(1+iAmLf)lnmk,2+“3At(a:ﬁ) KVnm k.2 Jor k=1
M(kk) = f
’ (a-b)Ata,K:
- slip ;
(1+iAtaLf)Inmk2+a3At a=b KViam'x2+ Pj for k=1
’ s+ o s+
H H;
2
M(k k+1) _ (1+iAIaLf)IHMk,3+a3 Af( C]l_l_sf) KVam’ 3 for k= NV
’ J
0 for k=NV

and F, consists of:
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3
Z {(1 iAt f 1 al)) qj,km_z - At[ladvec + Istress + bcpg]j’kﬂﬂ} Inmym

m=

S}

= — Atvadvec ; ,— Atbipg ALVnk—(l—OQ )Atvstressi’k fork =1
(a—b)Ar(1- az)KmpJ
- i qj k
3
Z{(l zAtf 1 al))qj’km_z [ladvec+lstress +bcpg] o 2} Inm.m
Fo(k)=1m
— Atvadvec ; ,— Atbipg . LV, —(1 — )At vstressj’k fork =1, NV
2
Z{(l zAtf 1 al))qj e At[ladvec+lstress+bcpg]j k+m_2} Inmm
m=1 ’
= —Atvadvec ;. — Atbipg ; LV —(1 — o, )At vstressj,gk fork=NV

At(a-b o : o Ty
+ ( ) Tj:/ TSX/ +1i :;/ Y
2 H;"Po HPo H;"Po HPo
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4.0 VERTICAL VELOCITY

The vertical component of velocity is obtained in ADCIRC by solving the 3D continuity
equation

ow__[ou_ Ov @.1)
0z Ox. Oy,

for w after u and v have been determined from the solution of the 3D momentum equations. In
Eq. (4.1), the subscript “z” has been added to the horizontal derivatives to emphasize that these
derivatives are evaluated along level coordinate surfaces. Eq. (4.1) is solved subject to the free-
surface and bottom kinematic boundary conditions:

19} 18] 18]
ws=a—€+u567i+vsgi at z=( (4.2)

oh oh
Wpr=—Up—_  —Vb L

at z=-h 4.3)
ox. Oy,

where u,, v, w, are the velocity components at the free surface (z=() and u;, vy, wp are the

velocity components at the bottom (z=-/4) assuming a slip condition is applied there.

Eq. (4.1) 1s discretized in horizontal space as:

ow Ou ov
ow _ M LN Y 4.4
< Oz ’¢j>Q <8xz ,¢I>Q <ayz ’¢/>Q o

The horizontal integration utilizes Rule 1 for the left side and Rule 2 for the right side (these
rules are described in APPENDIX - BASIC CALCULATIONS ON LINEAR TRIANGLES).

After multiplication by 3/ 4 Eq. (4.4) becomes:

NE;°

Ow, 1 ou ov
gz%— > A, ( + (4.5)

ANEJ' n=1 aXZ ayz

n

Eq. (4.5) is discretized over the vertical using a simple finite-difference for the left side and
centering the right side:
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o ) NE j
w13 (20 (o) ] () (o 46
Zk~ Zkn NEj o ox:)y \.), | |\ox:), \.), ]
Eq. (4.6) can be written in terms of the stretched coordinate system as:
_( ﬁuj ov |
— [ _+_ —_
| axo' n aya n_ly
N (8_4”} L[ox—a [8HJ a—b | Ouj
ox), \a=b )\ ox ), |\ H, oo
k
N [8_4”} N gk—ba {%Hj a->b ZV./
Wik~ Wjka| a=b 1 A Yo 4T ANE ¢ k
T 24, LA
or— 01 \ H;j NEj =1 { uj ov
— _ + —_
xo )y \ Vo),
N (8_(] N o-k_l—aj(aH] a-b )| Ouj
X ), a-b Oox H, oo
k-1
N og N o-k_l—a] oH a-b |l ov;
oy ) a-b oy H, oo (4.7)
k-1

The subscript “c” indicates that the horizontal derivatives in (4.7) are evaluated along stretched
coordinate surfaces. Discretizing the vertical derivative of horizontal velocity as:

_ ou j _(uj,k_uj,k—l]
oo Ok~ O
k

k-1

ouj

oo

and re-arranging yields:

51



ecnf(2)(2) [ [2)42)] )

ortoi
k g

1 hole B oH
Wj,k=W_/,k—1+A—ZAn + (alﬁ b ox ) (u,-,k—u_/,k71) (4.8)

ortoi
k =g

ole T, oH
+||— | + ik Vi
(ay l a—b (8)/ ]n (vj,k Vijk 1)

Eq. (4.3) is used to determine w;, ; Eq. (4.8) can then be solved recursively for k=2, 3, ... up to

the surface. (Notice that the vertical differences of horizontal velocity in Eq. (4.8) are evaluated
at node j only.)

As discussed by Luettich et al. (2002) and Muccino et al. (1997), the result obtained for the
vertical velocity at the free surface from Eq. (4.8), w; s—quuc» may not match the free surface

boundary condition, yy, , as specified in Eq. (4.2). This discrepancy is due to error in local fluid

mass conservation, (Luettich et al., 2002). ADCIRC attempts to optimally correct the vertical
velocity obtained from Eq. (4.8) using an adjoint approach. This results in a correction to Eq.
(4.8) that is linear over the depth:

Wf o-b
joint corrected H a—
Wz};,(]:m corrected _ Wj,k + (Wj,s — W(]’,k:&'ulface) —2W (49)
72"{ +1
H

In Eq. (4.9), Wy weights the relative importance of satisfying continuity in the interior of the fluid
vs satisfying the free surface boundary condition in the adjoint equation. Setting W, =0 forces
the corrected vertical velocity to exactly satisfy the free surface and bottom boundary conditions.
Setting W, to be large (e.g., W, ~100) adds a uniform correction to the vertical velocity solution
that is equal to half the surface boundary error. ADCIRC uses a default value of W,=0.
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5.0 SPERHICAL COORDINATE FORMULATION

ADCIRC solves the spherical governing equations by transforming these equations into an
equivalent set of equations in Cartesian coordinates using a standard cylindrical projection.
Applying the hydrostatic and Bousinesque approximations and assuming the radius of the Earth
is much greater than the thickness of the ocean, the 3D equations in spherical coordinates (4, ¢, z)
are: (e.g., Haidvogel and Beckmann, 1999)

Continuity

0
1 6_u+ 1 (vcos¢)+0_w+2_W=0 (5.1)
Rcos¢p OAL Rcos¢p  O¢ 0z R

V.u=

Horizontal Momentum

0|¢ + P -
@: __ 8 [5 P/gp, 0677]+£ To2 _bﬂ+m1+uvtan¢ (5.2)
dt Rcos¢ oA oz\ p, R
o|¢+ P, - 2
£=—fu—£ e+ P/ep, m]]+£ E |yt my == tang (5.3)
dt R o¢ oz\ p,
where

R =6.3782064x10°m, mean radius of the Earth
A, ¢ = longitude, latitude

d 0 u 0 v O 0
—=— —t——tw—
dt ot Rcos¢ OA R O¢ 0z
T T 0 OV

oz’ E- 0z

1 ) (E auj+ 1 9 [E auj 1 ) (E 8vj+ 10 [E 8vj

MusMyp =" 5 ~nr A o~ (~, | T 2 A4 T~ T, A, 2

P (Reosg) 04\ 04) R*0g\ " 09 ) (Rcosg) 04\ "04) R*op\” o4
g 0 f(p_p”)dz gif(p—pn)dz

Reospor’ p,  Rop: p,

b},abqj =

and other variables are as defined in Section 3.

Using a standard, orthogonal cylindrical projection centered at (Ao, ¢):
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x=R(A-1,)cos ¢,

(5.4)
y=R¢

Derivatives are evaluated using the chain rule:

OA Ox0A Oy oA ox
0_ox, 0 40

0 oxof ovop oy

Substituting for the derivatives in the spherical coordinate system with those in the Cartesian
system gives a transformed set of spherical equations:

Continuity

ou oOv ow vtan¢+2_w_

Vii=8§,—+—+—+ 0 5.5
Sr ox oy Oz R R (55)
Horizontal Momentum
du ol¢+r,/gp,—an] o uvtan ¢
—=fv—-g8 . +—| = |=bhitmt——— 3.6
i8Sy o oz\ p, ) O (5-6)
dv ol¢+pr/gp,—an] o(r. u’tan ¢
—=—fu— - +—| = |-b,+m,— 5.7
dt Ju-g oy oz\ p, byt m, R 7)
where
cosg, : : :
S, szsphemcal coordinate correction factor (5.8)
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0 0 0 0
—=—4us,—+v—+w—
dt ot ox Oy 0z
Tx Tn_p O OV
poﬂp 2827 ZaZ
_ 2 8 au 6 au 2 6
Mmemy =S, a Eza +5 Ezg , S, a E
o r¢slp—p, o rslp—p,
br:byEgSp_ Mdzy g_ Mdz
ox*s  p, P,

/'ax

Lof, v
oy “ay

A simple scaling analysis suggests that it may be permissible to drop the final two terms in Eq.
(5.5) and the final terms in Eqgs. (5.6) and (5.7), provided we avoid the regions near the poles
where tan ¢ approaches infinity. This limitation is consistent with the singularity at the poles
inherent in the original equations, Egs. (5.1) - (5.3), and in the cylindrical mapping. Thus it does
not appear to impose significant additional restrictions on the applicability of the governing

equations.

Dropping these terms simplifies the transformed spherical governing equations to:

Continuity
V-ﬁ=5pa—u+@+a—w=0
ox Oy oz

Horizontal Momentum

—+v—+wa——fv:—gS

ov ov  0ov ov
—tuS,—+tv_—+w_—+fi
ot ox Oy A

a[§+Ps/g/0c,—0”7]+ 0

? Oox

i _glletPigp,man]

oy

0z

0|z
oz\ p,

(sz
P,

}—bﬂ'mx

]—by+my

(5.9)

(5.10)

(5.11)

These equations are identical to their Cartesian counterparts with the exception that spatial
derivatives with respect to the x coordinate direction are multiplied by the spherical coordinate

correction factor, S,, defined in Eq. (5.8).

Consequently, Egs. (5.9) - (5.11) comprise a

generalized set of equations that allows ADCIRC to function using either a Cartesian horizontal
grid (by setting S, = 1) or a longitude, latitude horizontal grid (by converting the longitude and
latitude values into equivalent linear coordinate values, Eq. (5.4), and evaluating S, Eq. (5.8)).
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The velocity in Egs. (5.9) - (5.11) is aligned with the original coordinate reference frame (e.g.,
for the spherical coordinates (u, v, w) are aligned with (4, ¢, z)) and therefore it is not necessary
to transform the velocities to a different coordinate system.

Vertical integration of Egs. (5.9) - (5.11) is identical to integration of the Cartesian equations.
Thus, the two-dimensional, vertically-integrated equations are identical to their Cartesian
counterparts, except that spatial derivatives with respect to the x coordinate direction are
multiplied by S,.
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6.0 LATERAL BOUNDARY CONDITIONS

Elevation specified boundary condition —ADCIRC 2DDI and 3D

An elevation specified boundary condition is implemented by zeroing out all off diagonal terms
in the row corresponding to each elevation boundary node in the GWCE, Eq. (1.17), and setting
the on diagonal term in that row equal to the root mean square value of all of the other diagonal
terms in the GWCE matrix (to maintain matrix conditioning). The right side vector entry
corresponding to each elevation specified boundary node is set equal to the specified elevation
multiplied by the root mean square value mentioned previously. Symmetry is maintained in the
left side matrix by zeroing out the off diagonal terms in the column corresponding to each
elevation boundary node. To allow this, each off diagonal term in the column corresponding to
an elevation boundary node is multiplied by the elevation boundary value and then subtracted
from the right side vector of the corresponding equation.

Specified flux boundary condition —ADCIRC 2DDI

ADCIRC allows the specification of boundary conditions consisting of normal flux per unit
width (e.g., zero flux across land boundary segments and nonzero flux across river boundary
segments). These normal fluxes can be applied as either natural or essential boundary conditions
and the user may specify whether the tangential velocity along these boundaries is set to zero or
computed assuming free slip along the boundary. The specified normal flux per unit width is
inserted into the boundary integral term that appears in the right side of the GWCE, Eq. (1.17), at
each normal flux boundary node. (The convention used in ADCIRC for inputting normal flux
per unit width is that flux into the domain is positive and flux out of the domain is negative.
Therefore, the sign must be changed on the normal flux prior to using it in the GWCE since the
derivation of this equation assumes that a positive flux is in the direction of the outward pointing
normal.) If the normal flux is applied as a natural boundary condition, no modifications are
made to the momentum equations. If the normal flux is applied as an essential boundary
condition, the depth-average normal velocity, Uy, is forced to be equal to the normal flux per
unit width divided by the local depth and multipled by —1 (to maintain the convention that Ul is
positive in the direction of the outward pointing normal). Further details of the implementation
of the essential normal flux boundary condition in ADCIRC are presented below.

At any node in the horizontal, the momentum equations solved in ADCIRC 2DDI have the
structure:

[AUVl —AUVzMU}_ F. 6.0)
AUV, AUV, ||V ]| |F, '

where AUV,;, AUV, are the matrix entries computed from the finite element assembly process,
and F, F, comprise the right side forcing vector. At flux specified boundary nodes, the

57



equations are rotated into a normal - tangential coordinate system. The normal and tangential
velocities, Uy and Uy, are defined as the dot product of the velocity vector and the normal and

tangential unit vectors, N= (Nx, Ny) and T = (Tx: Ty):

UTx+VTy:UT

(6.2)
UNx + VNy = UN

(N and T are defined in the APPENDIX.) At specified normal flux boundary nodes the y-
momentum equation in (6.1) is replaced by the expression for the normal velocity in (6.2) and
the x-momentum equation is replaced by the tangential momentum equation formed by
multiplying the x-momentum equation (6.1) by 7, and adding the y-momentum equation (6.1)
multiplied by 7. Since T = N, and T, = -N, (see APPENDIX), the resulting system is:

[A UVIN,— AUV N, —AUV:N,- AUVINX} {U } ~ {FxNy - Fny} 6.3)

Nx Ny V UN

The left side matrix in (6.3) does not have the symmetry of the original equations, (6.1). This
can be recovered by adding the tangential momentum equation to the normal equation multiplied
by AUV, and dividing the result by AUV ;:

FxNy_Fny+AUV2 UN

Ny _Nx U
= AUV 64
va N}}M ‘ 9
Un

For the case that the tangential flux is also specified (e.g., equal to zero), the right side of the first
equation in (6.4) is replaced by Ur.

Zero normal velocity gradient boundary condition — ADCIRC 2DDI (version 42.05)

A zero normal velocity gradient boundary condition is implemented by replacing the momentum
equations at specified boundary nodes with equations that enforce the no-normal velocity
gradient condition. The computed velocity field is then used to determine a normal flux across
the boundary and this normal flux is used in the boundary flux integral in the GWCE at the next
time step.

The no normal velocity gradient is enforced in ADCIRC using two different approaches. The
first approach (boundary condition type 40) defines a fictitious node inside the domain for each
boundary node. Each fictitious node is located on the inward pointing normal to the boundary a
distance away from the corresponding boundary node equal to the distance of the furthest
neighbor from that boundary node (see Figure 6.1). At each time step the velocity is computed

58



at each node in the domain other than the zero normal velocity gradient boundary nodes. Next,
the velocity is interpolated in space to each fictitious node. Finally, the velocity at each zero
normal gradient boundary node is set equal to the velocity at the corresponding fictitious node.
The distance to the fictitious node (d in Figure 6.1) is selected so that the fictitious node lies
outside of the layer of elements immediately adjacent to the boundary. This way the velocity at
the fictitious node can be interpolated without knowing the velocity at any adjacent zero normal
velocity gradient nodes.

¢ boundary node

fictitious node

Figure 6.1 Schematic of the configuration used to determine the velocity at a
zero normal velocity gradient boundary node. The velocity at the boundary
node is set equal to the interpolated velocity at a fictitious node that is a
distance d away from the boundary node where d is the distance to the furthest
neighbor from that boundary node.

The second approach (boundary condition type 41) for enforcing the no normal velocity gradient
in ADCIRC is by imposing the conditions

oU

P

(6.5)
v _,
ON

at the boundary nodes. This can be expressed in terms of U, ¥, and N as:
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6_U_N oU N ou _0
ON “ox V@y

8_V_N oV N oV
ON “ox yay

(6.6)
=0

Applying a Galerkin weighted residual formulation with linear basis functions to Eq. (6.6)
yields:

ou ou
—,0 )t T .
<Nx ax ¢j> <NV ay ¢J>

{ U oU A0 oU oU
_ 40+ [N, g a0 =Y || N, S5+ dQ
[K'!-HNV x ¢j E!;Ny ay ¢'/ } n=1 l:(N ax Ny 6_)/ jg.!. ¢ :|
NEL

3 a¢ 3 ¢ NEjl 3
v yu w3 ] 3 w3 vbe v Sva] -0
n=l1 i=1 i=1

n=l1 i=1 i=1
ov
+<N®°¢f>
N

ov ov g aV ov
o ¢fdQ+J”N®¢de} 2[[“ o @jf O }

n=1

_NE/é 3 % 3 % NEjl B
=25 [NXZVi o +NylZ:1:Vi 8y} 26 NZVb +N ZVa, =0

n=1 i=1 i=1

(6.7)

Multiplying Eq. (6.7) by the constant 6 and rearranging, gives the final, spatially discretized
version of Eq. (6.6)used in ADCIRC:

%{i(i\’b + Nya,-)U,} -0

n=l|_ i=l

%{E(Nxbiﬂvya,-)vi} =0

n=l | i=l

(6.8)

If Eq. (6.8) is solved at only time level s+1, it requires the construction and solution of matrix
problems for the U and V velocity components. To avoid this Eq. (6.8) is split between time
levels s+1 and s. Assuming that each element attached to a boundary node is numbered so that
node 1 corresponds to the boundary node and nodes 2 and 3 correspond to the remaining nodes
in the element, Eq. (6.8) can be written as:
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%{E(NxbﬂrNya;)Uf}

Uf“ _ _ =l ]\1;2
DI Nbi+ Nyai)
NE; ”;1 (6.9)
2 {ZZ(Nxbi + Nyal)Vf}
Vit =
|:Nxbl + Nyal:l

=1

=

Eq. (6.9) allows the velocity at each boundary node to be determined independently of the
velocity at the adjacent boundary nodes, although it introduces a potentially undesirable time lag
into the solution.

Radiation boundary condition on velocity — ADCIRC 2DDI

A radiation boundary condition on velocity (boundary condition type 30) is implemented by
specifying a relationship between the normal velocity and the elevation field along the boundary.
The most common of this type of boundary condition is a Sommerfield radiation condition.
Normal velocities computed at a radiation boundary and the corresponding normal fluxes are
then inserted into the boundary integral term that appears in the right side of the GWCE, Eq.
(1.17).

Specified flux boundary condition —ADCIRC 3D

ADCIRC allows the specification of boundary conditions consisting of normal flux per unit
width (e.g., zero flux across land boundary segments and nonzero flux across river boundary
segments). These normal fluxes can either be applied as natural or essential boundary conditions
and the user may specify whether the tangential velocity along these boundaries is set to zero or
computed assuming free slip along the boundary. The specified normal flux per unit width is
inserted into the boundary integral term that appears in the right side of the GWCE, Eq. (1.17), at
each normal flux boundary node. (The convention used in ADCIRC for inputting normal flux
per unit width is that flux into the domain is positive and flux out of the domain is negative.
Therefore, the sign must be changed on the normal flux prior to using it in the GWCE since the
derivation of this equation assumes that a positive flux is in the direction of the outward pointing
normal.) If the normal flux is applied as a natural boundary condition, no modifications are
made to the momentum equations. In this case the momentum equations will try to generate an
appropriate vertical distribution of velocity over the depth, although vertical integration of this
velocity may not exactly match the specified normal boundary flux. If the normal flux is applied
as an essential boundary condition, the depth-average normal velocity, Uy, is forced to be equal
to the normal flux per unit width divided by the local depth and multipled by —1 (to maintain the
convention that Uy is positive in the direction of the outward pointing normal). In this case
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ADCIRC assumes the normal velocity is distributed uniformly over the depth. This is probably
not a good assumption if the normal velocity is nonzero! If a free slip tangential boundary
condition is used, ADCIRC will attempt to compute a tangential velocity that is consistent with

the specified normal velocity. Implementation of the essential normal flux boundary condition
in ADCIRC is described below.

At any node in the horizontal, the momentum equations solved in the 3D version of ADCIRC
have the structure:

Mg=F, (6.10)

where, M is a complex tridiagonal matrix, ¢ (= u + iv) is the complex solution vector for
velocity, F, is the complex forcing vector and recall that the real and imaginary parts of (6.10)
correspond to the x and y momentum equations, respectively. Row k& in matrix M consists of:

M(k,k—l) = Auv,,_+iAuv,, |
M(k,k) = Auv,, +iAuv,, (6.11)
M (k,k+1)= Auv, ., +iAuv, .,

where:
2
a—>b s
| Inmy, + o5 At KVnm . for k #1
Auv, = HS"
0 for k=1
Atal.f]l’ll’l’lk,l for k#1
Auv,, =
’ 0 for k=1
2
a—>b P
Inmiz+ A3 A —— | KVnmjio for k=1
Auv,, = ’ ,
_ (a-b)AtayK?,,
Inmyr+ s At( - ]f ) KVnm’x { P & for k=1
Hj' j
Auv,, =Ata,f Inmy.; for all k
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2
Inmi 3+ Qs Af(a — b) KVnm'ss for k# NV

Auvl,k+l = H;H
0 for k =NV
_ Al‘a]f]nmkﬁ fOVkiNV
Auvy gy = 0 for k=NV

At boundary nodes where normal flux is specified, the y-momentum equation is replaced by the
equation for the normal velocity:

UurN:+tviN,=Uny (6.12)

Because the vertical distribution of normal velocity is uniform, this applies locally at each node
in the vertical. The x-momentum equation is replaced by the tangential momentum equation
formed by multiplying the original x-momentum equation by 7, and adding the original y-
momentum equation multiplied by 7,. Since 7y =N, and 7, =-N, (see APPENDIX), the
resulting system is:

(AUVI,k—lNy - AUV2,k—1Nx) Uk-1~ (Auw,;HNy + AMVI,k—le) Vi1
+ (Auvl,kNy — Auvy kN« )Uk - (Aqu,kNy + Auvii N« )Vk
+ (Auvl,k+1Ny - AMVZ,kHNx) Ukl — (Aqu,szy + AHVI,k+1Nx) Vsl
=Re{F,|N,~Im{F | N,

(6.13)

The left sides of (6.12) and (6.13) do not have the symmetry of the original momentum
equations. This can be recovered by multiplying (6.12) by Auv, at levels k-1, k, and k+1 and
adding these to (6.13):

Auvip-iN ytte-1 — Auvip-iN xvie + AuvieN yur — AuvigpN « vi

T Auvi N yurn = AuvigaN « Vi (6.14)
=Re {FV} N,— Im{Fr}Nx + (Auvz,k—l + Auvoit AMV2,k+1) Uwn
Multiplying (6.12) by Auv; at levels k-1, k, and k+1 and adding these together gives:

AMVLk—le Up T Auvl,k_1Nka_1 + Auvl,kNx urt Auvl,kNka_l (6 15)

T+ AuvigaN xuk T AuvigaN yvia = (AMVI,k—l + Auvii + AuV1,k+1)UN

Equations (6.14) and (6.15) can now be written in the form of (6.10):
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Mq=F, (6.16)

where

*

e (k,k _1) = Auvikf1 +iAuv2,,H
M*(k,k) = A”"ik +iAuv;k
M (kk+1)= Auvik+l +1'Auv;k+l

AWT,H = Auv,, N,
Auv;k_l = Auv,, N,
Auvik = Auv, N,
Auv;k = Auv,, N,
A“VT,/{H = A”"l,any

.
Auvz,k+1 = Auvl,kHNx

Fr=[Re{F N, ~Im{F N+ (Auvsis+ Auvsi+ Auvapn) Uy ]
+ il:(AZ/lVI,k—l + Auviy+ Auvl,m)UN]

For the case that the tangential flux is also specified (e.g., equal to zero), the x-momentum
equation is replaced by.

wiN,—viN,=Ur (6.17)

and the y-momentum equation is replaced by (6.12). This also generates a system of equations
of the form of (6.16) where:

M (k,k-1)=0
M*(k,k) = Auvik +iAuv;k
M (k,k+1)=0

.

Auvl’k =N,
.

Auv,, =N,
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F,=Ur+iUy

Zero normal elevation gradient boundary condition — ADCIRC 2DDI and 3D

A zero normal elevation gradient boundary condition could be implemented by replacing the
GWCE equation corresponding to each zero normal elevation gradient boundary node with the
equation:

oc _ . o¢ o¢
——=N,—+N,—=0
on =N ox Ny oy

(6.18)
where the normal unit vector, N =(N wN y) is defined in the APPENDIX. Applying the
Galerkin spatial discretization to Eq. (6.18) gives:

og g ¢
<an > <N‘a ’ f’>+<Nyay’¢">

—ﬂjm ¢ dmjm 0, dﬂ}

n=l|

Sl (5] o

nQ nQ,

_N | (96 29
_Z‘ 3 {N““(ax j,,ﬂv’{@y ”

NE;q

=2 {inéibi+Nyi;iai} =0

nl

Eq. (6.19) can be evaluated implicitly in time using Eq. (1.18). Multiplying through by the
constant 6, yields a final set of discrete equations for the zero normal elevation gradient
boundary condition.

NE ;

3 3
Z{M;Zf bt N D ?‘“a,} =0 (6.20)
i=1 i=1

n=1

One problem with applying this boundary condition is that it renders the GWCE left side matrix
nonsymmetric. In contrast to the case of an elevation specified boundary condition where a
straightforward manipulation restores matrix symmetry, there is no exact method for restoring

the symmetry of this system. Consequently, this boundary condition has not been implemented
in ADCIRC at the present.
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Radiation boundary condition on elevation — ADCIRC 2DDI/3D

A radiation boundary condition on elevation could be implemented by specifying a relationship
between the normal flux and the elevation field along the boundary. The most common of this
type of boundary condition is a Sommerfield radiation condition. A difficulty with applying any
type of boundary condition imposed on the GWCE, is that it renders the left side matrix
nonsymmetric and therefore is not supported in the present version of ADCIRC.
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7.0 BAROCLINIC PRESSURE GRADIENT CALCULATION NOTES

As presented previously, the baroclinic pressure gradient is defined by

b*Egai j(p_p”)dz, byEgach(p—pn)dZ
X p, v,

These terms are evaluated in ADCIRC in two steps. In the initial step, the 3D baroclinic
pressure field is computed as:

BPress(z) = f g(,Dp— ,00) dz = B EgaH—b) J-:(p—po)da = ij

where, density has been replace by the standard oceanographic “sigma t” variable

or=p-1000, o5=p,—1000

This should not be confused with the variable, o, representing the dimensionless vertical
coordinate system. In the second step, the horizontal baroclinic pressure gradients are computed
as horizontal derivatives (in level or z coordinates) of the baroclinic pressure field.

b, = g BPress, p,= i BPress
ox T 0Oy

For any horizontal node j and vertical node k£, ADCIRC computes these gradients at the vertical
position of node k. This is accomplished for each element containing node j by vertically
interpolating the baroclinic pressure field at the element vertices to the vertical position of node k
and then computing the horizontal gradients directly.
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8.0 APPENDIX - BASIC CALCULATIONS ON LINEAR TRIANGLES
Consider the triangular finite element with vertices numbered 1-3, counter-clockwise around the

element. Any variable, Y, can be expanded linearly within the element based on nodal values
as:

3
Y=Yip,+ Y20, + Y30, = 2Y1¢5

i=1
where,

Y1, Y2, Y3 =nodal values of Y at elemental verticies 1, 2, 3

¢, 9,, ¢, = linear basis functions defined as:

p :xzy3—x3y2+b1x4ra1y, y :)C3y1_X1y3+bzx+a2J’, p :xlyz—ny1+b3x+a3y
! 24 e 24 0 24
A1=X37 X2 A2= X1~ X3 A3 = X2 Xl

bi=Y,= V3 ba=Y;=V; bs3=y,— ),

A= @ = elemental area

Spatial derivatives are computed as:

% _bi. 09i_a

ox 247 oy 24
Spatial integrations are computed using:

(ei)!(ej)!

“9dA =24
£¢l ¢] (e,--f—ej-l—z)!

Ifi#jand e=e =1, j¢i¢]d,4=%. Ifi=jand ei=e; =1, J.¢j¢JdA=J.¢fdA=§.
A A A
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Because linear basis and expansion functions are used, their derivatives are constant across an
element and spatial integrations involving derivatives become:

09, A A
J.¢i8)c oy 8x 8yj¢ :g xajy
A 5

ADCIRC uses both exact and lower order integrations (i.e., lumping). Horizontal spatial
integrations used in the GWCE are presented in full in SECTION 1.0. Horizontal spatial
integrations used in either the 2DDI (SECTION 2.0) or 3D (SECTION 3.0) momentum
equations are summarized by the following integration rules:

Rule 1: (nodal lumping, applied to terms that do not contain spatial gradients)

(r6),=3 [ véa0 =x 3 [oa0 -,

le

Rule 2: (fully consistent, applied only to spatial gradient terms)

NE (O BY NE; 4
ga0 -5 [ou0 S0 2r
a 6 n= IQ n=1 axﬁay n Qn n=1 3 8)(,8)/ n

Rule 2a: (approximation to Rule 2, used in older versions of ADCIRC)

o :fAn or | ANE_,f oY
ax,ay’ J o 3 ax’ay ) 3NE/ n=1 8x,8y "

where,

A, = area of element n
NE ;
Ave ;= ZA,, = area of all elements containing node j

n=1

NE ; = number of elements containing node j
¢ ; = horizontal weighting function, =1 at node j, =0 at all other nodes,

varies linearly between adjacent nodes

Note, that the definition of the weighting function ¢ reduces integration over the horizontal

domain Q to integration over only the NE; elements containing node j. Also, Rule 2 assumes a
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Galerkin finite element formulation in which the quantity being differentiated (Y in the
integration rules described above) varies linearly within an element. Therefore, the spatial
derivative is constant within an element and can be pulled out of the elemental integrations.
Finally, Rule 2a is equal to Rule 2 for uniformly sized elements. It was implemented in early
versions of ADCIRC-2DDI and is included in this document for posterity sake. It was removed
from the code as of version XX.XX.

70



The component of a vector quantity, Y, (Y = Yx,Yy), in any direction can be computed as the

dot product of the vector quantity and the unit vector in the specified direction. In ADCIRC this
is done at boundary nodes, where the horizontal velocity field may be rotated into components
that are normal and tangential to each boundary node or where the elevation gradient normal to
the boundary may be specified.

If a node is on the interior of a boundary (i.e., it is not the end node where two different types of
boundaries meet), unique normal and tangential directions are defined as shown in the figure
below.

Definition figure for normal and tangential directions at boundary node 2, provided
that this node does not mark the end of one boundary type and the beginning of
another. In this situation the normal direction is defined to be perpendicular to the
line connecting nodes 1 and 3. The ADCIRC grid file requires boundary nodes to be
specified with the domain interior on the left as one progresses along the boundary.

The normal and tangential components (Y N,YT) of vector Y are:
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and the normal and tangential spatial derivatives of a scalar function, Y, are:

oY oY oY
_:_Nx+_
ON Ox oy
or_or or
or ox " oy’

Ny

The unit vectors, N and T , are:

N,=cosa N,=sina

Tx=cos(a—90) Ty=sin(a—90)

Since S =a+90, the unit vectors can be written more conveniently as:

Nx=cos(,8—90)=sinﬂ=u N},=sin(ﬁ—90)=_cosﬁ=M

L L3

T,=cos(-180)=—cos B =N, T,=sin(f-180)=-sinf=-N,

where (x1, yl), (xz, yz) and (x3, y3) are the horizontal coordinates of nodes 1, 2 and 3 and

Ly = \/(x3 - x1)z + (y3 - yl)2 is the horizontal distance between nodes 1 and 3.

If a node is located where two different types of boundaries meet, two normal and tangential
directions are defined for the node, one for each boundary, as shown in the figure below.

Definition figure for normal and tangential directions at boundary node 2, when this
node marks the end of one boundary type and the beginning of another. In this
situation two normal and two tangential directions are defined for node 2, one for
computations pertaining to the boundary type to the right of node 2 (i.e., for



In this case

Ynia= Y Nia=Y:Niz, + YNz,
Yria= Y- Tia =YaTia, + X, T2,

Yyss= T Nos=YeNas, + Y, Nas,
Yros= Y- Tas = YaT2s, + Y, Tas,

and spatial derivatives are handled in an analogous way.

The unit vectors are:

o _ TN _ _X1— X2
Niz, = Slnﬂl,z - N1,2y - Cosﬂl,z -
Lo Lo
T2, = N2, Ti2,=—Nia,
: Y3~ ) X277 X3
N2,3x:Slnﬂ2,3=— N2,3y:_cosﬂ2,3:
L3 L3
T23,= N2, T23,=—Nags,

where 1, = \/()Cz —x) (y,— yl)2 and ;= \/(x3 —x2) + (- yz)2 are the distances between
nodes 1 and 2 and nodes 2 and 3, respectively.
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