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Abstract: Mass balance error has been computed traditionally by using conventional fluxes derived from the conservation of mass
equation, but recent literature supports a method based on fluxes that are consistent with the discretization of the governing equations. By
comparing the mass residuals from these two methods to the truncation errors produced by the discretization of the governing equations,
we show that the conventional fluxes produce mass residuals that are more descriptive of the overall behavior of the model, i.e., they are
better correlated with truncation error. Then we demonstrate that these mass residuals can be used as a criterion for mesh refinement. In
an example using a one-dimensional shallow water model, we demonstrate that, by moving nodes from regions with large mass residuals
to regions with small mass residuals, a mesh can be developed that shows less truncation error than a mesh developed by using localized
truncation error analysis. And, in an example using a two-dimensional shallow water model, we demonstrate that the computed solution
can be improved in regions with large mass residuals through mesh refinement.
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Background

The use of norms for error diagnosis has a long and diverse his-
tory. Gresho and Lee �1981� argued that oscillatory solutions are
“good” in that they provide motivation for reexamination of
boundary conditions, geometry, meshing, and problem formula-
tion. By examining the errors in a computed solution, it is pos-
sible to identify parts of the model that require improvement.
Researchers have applied this idea in the areas of mesh generation
and refinement. Some researchers refine meshes by examining the
solution or its derivatives �Behrens 1998; Cascon et al. 2003;
Marrocu and Ambrosi 1999; Wille 1998�. These adaptive meshing
techniques use a posteriori error estimators that are based on the
computed response, and they have been applied successfully in
shallow water applications. However, because these techniques
are based on solution error, which often involves a discrete esti-
mate of the gradient of the computed response, they can reintro-
duce truncation error.

Other researchers generate meshes based on a localized trun-
cation error analysis �LTEA�, which minimizes phasing and am-
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plitude errors �Hagen et al. 2000, 2001�. In the review of adaptive
mesh strategies by Baker �1997�, the author mentions earlier uses
of truncation error as a meshing criterion �Berger and Jameson
1985; Berger and Oliger 1984; Lee and Tsuei 1993� but notes that
“�s�urprisingly, this approach to error estimation does not appear
to have gained much acceptance.” One possible reason is that it is
costly to develop these grids because they require a priori calcu-
lation of the truncation errors, which require knowledge of the
“true” solution, typically obtained from a uniformly and highly
refined mesh. And, like the adaptive strategies above, these strat-
egies require a discrete estimate of derivatives, albeit on a finer
mesh, so truncation error is minimized.

In this paper, we examine the use of mass residuals as a cri-
terion for mesh refinement. Mass conservation must be a con-
sideration for any shallow water model, but it is especially
important for continuous Galerkin finite-element models, such as
the advanced circulation �ADCIRC� family of models used in the
numerical examples in this paper �Luettich and Westerink 1992;
Luettich and Westerink, unpublished online user’s manual, 2004�.
In particular, continuous Galerkin finite-element models can suf-
fer from global or local mass error �Lynch 1985�. Global mass
balance errors can be eliminated through proper treatment of the
boundary conditions �Lynch 1985; Kolar et al. 1996�. However,
local mass errors can persist in complex applications, such as
regions with rapidly converging/diverging flow or wetting and
drying �Kolar et al. 1994; Horritt 2002�. In addition, local mass
errors are acutely problematic when a shallow water model is
coupled to a transport model. If water mass is not conserved, then
the transport model will show artificial gains or losses in the mass
of the transported species. Minimization of these local mass re-
siduals would improve the behavior of the shallow water model in
all of these applications. Furthermore, and in contrast to mesh
refinement based on LTEA, mesh refinement based on mass re-
siduals does not require knowledge of the forms of the truncation
error terms and does not require a highly resolved background
grid �Hagen et al. 2000, 2001�. Thus, it has the potential to be

performed in real time, to improve resolution in wetting and dry-



ing regions as a storm surge inundates and recedes, for example.
We examine this criterion in the framework of two research

questions. First: Which mass residual is a better indicator of trun-
cation errors? Second: Can this mass residual be used as a crite-
rion for mesh refinement?

Recent literature disagrees about the best method to compute
local mass residuals in models based on the continuous Galerkin
finite-element method; specifically, there is disagreement about
how best to compute flux. A conventional method of computing
flux would begin with the conservation of mass equation and
evaluate a boundary integral, which in one dimension gives the
familiar Q=HU, where Q�flux; H�total water depth; and
U�depth-averaged velocity �Kolar et al. 1994�. However, in
models based on the continuous Galerkin finite-element method,
mass conservation is enforced globally. Thus, when the conven-
tional fluxes are computed locally in those models, the fluxes may
not necessarily conserve mass because they are not consistent
with the finite-element discretization of the governing equations
�Hughes et al. 2000; Berger and Howington 2002�. Instead, it is
possible to derive fluxes that are consistent with the discretization
and that conserve mass locally. In this paper, we derive both the
conventional flux and consistent fluxes for the one-dimensional
ADCIRC model, and then we examine how well the respective
residuals correlate with local truncation errors. If these mass re-
siduals do indeed correlate with local truncation errors, then they
might be used as a mesh refinement criterion.

In the sections that follow, we derive the fluxes and their
respective error norms, examine their correlation with local trun-
cation errors in two test cases, and demonstrate the development
of a computational mesh based on the minimization of mass
residuals, both in one and two dimensions. These analyses will
be conducted with the ADCIRC family of models �Kolar and
Westerink 2000�, which have found use in a variety of applica-
tions, ranging from storm surge calculations to ecosystem studies
�Westerink et al. 2008; Luettich et al. 1999�. ADCIRC is based on
the generalized wave continuity �GWC� equation and the continu-
ous Galerkin finite-element method. The GWC equation was first
developed by Lynch and Gray �1979� and Kinnmark �1984,
1985�, and it employs a numerical parameter G that weights the
contributions of the wave equation and the primitive continuity
equation to prevent spurious oscillations. However, ADCIRC’s
implementation of the GWC equation is not dissimilar from shal-
low water models based on the continuity equation; for example,
if the numerical parameter G is selected carefully, then the dis-
cretization of the GWC equation can be shown to be equivalent to
the discretization of the continuity equation using the quasi-
bubble scheme employed by Telemac �Mewis and Holtz 1993;
Atkinson et al. 2004�. Furthermore, the results herein can be ap-
plied to other shallow water models, such as Norton et al. �1973�
or Lynch et al. �1996�, which are based on the continuous Galer-
kin finite-element method. In any model that does not enforce
mass conservation locally, the mass residuals might be useful as a
criterion for mesh refinement.

Methods

Mass Residuals

The algorithm to evaluate mass conservation was presented by

one of the writers in a previous work �Kolar et al. 1994�; it is
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repeated here for completeness. The conservation of mass equa-
tion reduces to the depth-averaged continuity equation under shal-
low water assumptions, to get

��

�t
+ � · �HU� = 0 �1�

where ��departure of the water surface elevation from the mean;
��gradient operator in two dimensions; H�total water depth;
and U�depth-averaged velocity. Integrate Eq. �1� over space and
time to obtain

�
t0

t �
�

� ��

�t
+ � · �HU��d� dt = 0 �2�

where ��entire domain �for a global check of mass conserva-
tion� or one element or a patch of elements �for a local check of
mass conservation�; t�time; and t0�reference time, such as the
beginning of the simulation. The first term in Eq. �2� is integrated
over time and the divergence theorem is applied to the second
term to obtain

�
�

��t − �0�d� +�
t0

t ��
��

HU · n d�����dt = 0 �3�

where the first term represents accumulation and the second term
represents net flux. Now we approximate the dependent variables
with their discrete counterparts. For the first term in Eq. �3�, we
approximate � with linear Lagrange basis functions and evaluate
exactly the integral as

�
�

��t − �0�d� = �
e

��t − �t0
�eAe �4�

where Ae�area of element e; �̄�arithmetic average of the nodal
values of � over the element; and the sum is over all elements in
the domain of interest.

For the second term in Eq. �3�, the boundary integral repre-
sents the net flux into the domain, where n�unit outward normal
vector. There is disagreement in the literature about the best
method to compute this net flux. For now, we define

Qnet =�
��

HU · n d���� �5�

and then we approximate the second term in Eq. �3� using the
trapezoidal rule

�
t0

t ��
��

HU · n d�����dt =�
t0

t

Qnet dt 	 �
k

1

2
�Qnet

t+�t + Qnet
t ��t

�6�

where k�time step index. Note that, in order to keep the deriva-
tion more general, the above relations were derived for a two-
dimensional model; they can be simplified easily to their
one-dimensional counterparts. In the ensuing derivation, the point
of departure will be the one-dimensional equations in order to
keep the mathematics tractable.

Thus, for a single one-dimensional element to conserve mass
locally over one time step, it would have to satisfy exactly this
equation

��t+�t − �t��xe + 1
2 �Qnet

t+�t + Qnet
t ��t = 0 �7�

where �xe�length of the element. If any residual error exists,

then it would appear as a nonzero sum.
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Debate in the literature centers around how to evaluate the net
flux, Qnet, defined in Eq. �5�. We examine two methods of com-
puting fluxes. The first method evaluates the boundary integral in
Eq. �5� using exact quadrature. Thus, in one dimension, the inte-
gral reduces to point evaluations of H and U at the boundaries of
the element

Qnet,V 
�
��

HU · nd���� = − HLUL + HRUR �8�

where the subscripts L and R denote left and right boundaries of
a one-dimensional element, respectively; and the subscript V in-
dicates that these fluxes are denoted as conventional fluxes. Be-
cause it is based on the continuous Galerkin method and the
GWC equation, the ADCIRC model does not enforce locally the
mass conservation equation shown in Eq. �1�. Our first error mea-
sure uses Eq. �7� and the conventional fluxes from Eq. �8� to
obtain

�V = ���t+�t − �t��xe + 1
2 �Qnet,V

t+�t + Qnet,V
t ��t� �9�

where �V�mass balance residual. This residual is not normalized
to the still water volume in the element or the departure from the
still water volume in the element. We examine only the magni-
tudes of these residuals for ease of comparison with the local
truncation errors, for reasons explained below.

The second method solves for fluxes in a manner that is
consistent with the Galerkin finite-element formulation of the
GWC equation. According to Hughes et al. �2000� and Berger and
Howington �2002�, fluxes computed in this manner are locally
conservative. A comprehensive derivation of these fluxes for the
one-dimensional ADCIRC model can be found in Dietrich et al.
�unpublished internal report, 2006�; we include the significant
steps here. Begin with the one-dimensional form of the GWC
equation

�2�

�t2 + G
��

�t
− HU

�G

�x

−
�

�x
� �

�x
�HUU� + gH

��

�x
− El

�2

�x2 �HU� + �HU − GHU� = 0

�10�

where G�numerical parameter introduced by Kinnmark �1985,
1986�; g�gravitational constant; El�lateral eddy viscosity; and
��bottom friction parameter, here assumed to be a constant and
to have units of sec−1. Note that, for all of the test cases herein,
the eddy viscosity has been assumed to be constant. For con-
venience, we replace the quantity in brackets with the dummy
variable A, multiply by the linear Lagrange weight function asso-
ciated with node i, and integrate over two elements containing
node i to obtain

�
xi−1

xi � �2�

�t2 + G
��

�t
− HU

�G

�x
−

�A

�x

�i dx

+�
xi

xi+1 � �2�

�t2 + G
��

�t
− HU

�G

�x
−

�A

�x

�i dx = 0 �11�

Apply integration by parts to the last term in both integrals to

obtain
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�
xi−1

xi �� �2�

�t2 + G
��

�t
− HU

�G

�x

�i + A

d�i

dx
�dx − �A�i��xi

−

+�
xi

xi+1 �� �2�

�t2 + G
��

�t
− HU

�G

�x

�i + A

d�i

dx
�dx + �A�i��xi

+ = 0

�12�

where we have utilized �i�xi−1�=0 and �i�xi+1�=0. In the two
boundary terms, the superscripts indicate contributions from the
left �−� or right �+� of the node. By substituting the one-
dimensional forms of the conservation equations for mass and
momentum, we can simplify the dummy variable A in those
boundary terms to

�
xi−1

xi �� �2�

�t2 + G
��

�t
− HU

�G

�x

�i + A

d�i

dx
�dx

+ ��� �Q

�t
+ GQ
�i��

xi
−

+�
xi

xi+1 �� �2�

�t2 + G
��

�t
− HU

�G

�x

�i + A

d�i

dx
�dx

− ��� �Q

�t
+ GQ
�i��

xi
+

= 0 �13�

where Q�flux through node i. In an example by Berger and
Howington �2002� of the advective transport of a conservative
tracer, only the flux Q appears in the boundary terms, and thus
they are able to solve for fluxes that are both locally conservative
and continuous at the nodes. However, the GWC equation is a
derivative form of the shallow water equations, which gives rise
to the �Q /�t+GQ term on the boundary. Thus, we are unable to
enforce continuity of flux directly at each node; rather, we enforce
continuity of the quantity �Q /�t+GQ. To do so, we require

�� �Q

�t
+ GQ
�

xi
−

= −�
xi−1

xi � �2�

�t2 �i + G
��

�t
�i − HU

�G

�x
�i + A

d�i

dx

dx �14�

and

�� �Q

�t
+ GQ
�

xi
+

=�
xi

xi+1 � �2�

�t2 �i + G
��

�t
�i − HU

�G

�x
�i + A

d�i

dx

dx

�15�

Eqs. �14� and �15� can be thought of as ordinary differential equa-
tions that can be solved for Q, in a manner similar to Massey and
Blain �2006�. It should be noted that the resulting discrete flux
equations are quite complex, involving many terms, and thus it is
not possible to attach the same physical interpretation that was
done for the conventional fluxes shown in Eq. �8�. However, in
the limit as G→�, the fluxes at the boundary can be recovered in
terms of just Q.

Using these consistent fluxes, we can solve for the net flux in
an element

Qnet,S = − QL + QR = − Qxi
+ + Qxi+1

− �16�

where the flux Qxi
+ corresponds to the right side of node i, and the

−
flux Qxi+1
corresponds to the left side of node i+1. �The flux is



continuous across node i only if Qxi
+ =Qxi+1

− �. Then define a second
error measure

�S = ���t+�t − �t��xe + 1
2 �Qnet,S

t+�t + Qnet,S
t ��t� �17�

where �S�mass balance residual when the net fluxes Qnet,S are
evaluated using the consistent flux statement given in Eq. �16�.
�Note that we are using the subscript V to denote conVentional
and the subscript S to denote conSistent.�

Note that the error norms defined in Eqs. �9� and �17� are
dimensional. They could be normalized to the deviation from the
still water volume of the element by dividing by �t+�t�xe, where
�t+�t
��L,t+�t+�R,t+�t� /2�average at time t+�t of the water sur-
face elevation departures from the mean for the nodes on the left
�L� and right �R� of a one-dimensional element, and �xe�length
of that element. However, this normalization is counterproductive
in the framework of this work, where the goal is to establish a
mass residual that can be used as a criterion for mesh refinement.
If the error norm is related inversely to the mesh spacing, i.e., if
decreases in the mass residual in the numerator are offset by
decreases in the mesh spacing in the denominator, then the error
norm may not converge as the mesh is refined. In fact, in our
experience, the normalized mass residuals have sometimes in-
creased as the mesh is refined, which is not the case for the
residuals as they are defined above. In short, normalization of the
residuals masks the actual error in the domain and limits inter-
mesh comparisons. For those reasons, we use the non-normalized
residuals herein.

We stress the importance of the flux discontinuities at the
nodes. This result is a significant departure from the results pre-
sented by Berger and Howington �2002�, and it calls into question
the utility of the consistent flux approach. Mass conservation is
necessary in transport applications, but those applications require
a continuous flux in order to conserve information from one ele-
ment to the next. Without a continuous flux, the perfect elemental
mass conservation given by the consistent fluxes is lost. In order
to examine this behavior in the context of the GWC equation with
respect to local truncation errors and mesh refinement, we define
the discontinuity

	S = �Qxi
+ − Qxi

−� �18�

which becomes our third error norm. In contrast to the mass
balance residuals defined in Eqs. �9� and �17�, the discontinuity
defined in Eq. �18� is nodal based.

Truncation Errors

ADCIRC is based on two equations: the GWC equation, which is
a derivative form of the mass conservation equation; and the non-
conservative form of the momentum equation �NCM�. The GWC
equation is shown in Eq. �10�. The NCM equation in one dimen-
sion is

�U

�t
+ U

�U

�x
+ �U + g

��

�x
−

El

H

�2

�x2 �HU� = 0 �19�

where the variables are defined previously. In the one-
dimensional form of the ADCIRC model, the GWC and
NCM equations are discretized using linear Lagrange basis
functions and a Galerkin finite-element scheme in space, a
Crank–Nicolson scheme on the linear terms in time, and an ex-
plicit formulation for the nonlinear terms in time. We utilize exact
quadrature rules and an L2 interpolation for the advective terms.

Full details for the higher-dimensional forms of ADCIRC can be
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found in Luettich and Westerink �unpublished online user’s
manual, 2004�.

Truncation error expressions for every term in the equations
were developed by expanding in a Taylor series about a com-
mon interior node point. Use of a symbolic manipulator, such as
Mathematica, allows us to carry out the analysis with confidence
up to any order for the full nonlinear equations �which require
products of Taylor series�. These truncation error expressions can
be found in Dresback and Kolar �unpublished internal report,
2004� or in Dresback �2005�. A qualitative examination of these
expressions shows that the GWC and NCM equations are first-
order accurate in time, first-order accurate in space for variable
node spacing, and second-order accurate in space for constant
node spacing. The NCM equation becomes second-order accurate
in time if the equation is linearized.

A quantitative examination of the truncation error expressions
requires information from both fine and coarse grid solutions. For
example, the first term in the GWC equation is the time derivative
term, �2� /�t2. In its truncation error expression, the leading order
term is second order in time and is given by

1

36
��xj − �xj−1���t�2 �5� j,k

�x � t4 �20�

where j�spatial index; and k�temporal index. To approximate
the derivatives that appear in the truncation error expressions, we
use second-order central difference schemes on a fine grid �true�
solution, which is obtained by refining the grid until the solution
converges to the sixth decimal place. To evaluate the rest of the
terms in the expressions, such as the nonderivative components in
Eq. �20�, we use information from a coarse grid solution, namely,
a coarse grid spacing, time step, and parameter values. The trun-
cation errors for all terms in the GWC and NCM equations are
summed and compared against the mass residuals �V and �S and
the flux discontinuity 	S, as computed from the coarse grid simu-
lation. Note that we examine the magnitudes of these truncation
errors, to prevent cancellation of errors due to opposite signs.

For the ensuing discussion, it is useful to think of the trunca-
tion error expression in Eq. �20� as containing a derivative part
and a grid/parameter part. For all of the truncation error terms, the
derivative part is independent of the coarse grid discretization and
thus fixed �for a given domain and a given simulation�. And it is
evaluated by using a true solution, which in our case is a fine grid
solution that remains the same for all coarse discretizations. Re-
gardless of the coarse grid that is used to discretize this domain,
these values from the derivative parts of the errors will persist.
However, because the algorithm is consistent, the product of the
grid/parameter and derivative parts goes to zero in the limit as the
grid is refined.

On the other hand, the grid/parameter component of each trun-
cation error term is dependent on the discretization and other
user-selected parameters. A modeler can manipulate this compo-
nent to alter algorithm behavior. In fact, some grids are designed
to minimize the coarse component in regions where the fine com-
ponent is large �and vice versa�, so that the overall truncation
error is uniform throughout the computational domain �Hagen
et al. 2000, 2001�.

Analyses in One Dimension

We examine initially the relationships between our error norms

and local truncation errors using a one-dimensional test based on
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a slice of an ocean shelf and basin �shown in Fig. 1�; we will refer
to it as the shelf break domain. It is an idealized version of the
Western North Atlantic Ocean, as if a slice had been taken per-
pendicular to the United States coastline and extended into the
deep ocean �Hagen et al. 2000�. Local mass errors have been
observed to occur in regions with rapidly changing bathymetry
where the flow converges or diverges �Kolar et al. 1994�. This
domain contains a shelf break where the bathymetry increases
rapidly from a depth of 200 m to a depth of 5 km, and thus it
should be a good test of the model’s local mass conservation and
truncation error properties.

The first test on this domain has a constant grid spacing of
about 44.4 km, which corresponds to 46 nodes. The second test
on this domain has the same number of nodes, but they are vari-
ably spaced, as determined from the LTEA method �Hagen et al.
2000, 2001�. The LTEA method places nodes based on the trun-
cation errors associated with the discrete form of the linearized,
harmonic conservation of momentum equation, and it has been
shown to improve both accuracy and efficiency. The grid spacing
ranges from about 112.5 km in the deep water to 1 km at the shelf
break. Fig. 2 compares the two different node placements for the
shelf break domain. Note that the LTEA method clusters nodes at
a distance into the domain of about 1,750 km, which is where the
break in the bathymetry occurs.

Both meshes share the following simulation parameters: a time
step of 1 s, a simulation time of 3.24 M2 tidal cycles �or 40.24 h�,
a constant bottom friction of 0.0001 s−1, a lateral eddy viscosity
of zero, and a numerical G parameter of 0.001 s−1. They also

Fig. 1. Bathymetry for shelf break domain �adapted from Hagen
et al. 2000�

Fig. 2. Distribution of nodes for last 400 km of shelf break domain,
for three meshes
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share the same fine grid �“true”� solution, which utilizes 8,193
nodes and a constant grid spacing of 244 m. This fine grid was
obtained by refining the shelf break �constant spacing� domain
until the solution converged to the sixth decimal place. We will
present errors from the third to last time step in these simulations,
so the elevation and velocity output from the fine grid solution
was saved for the last five time steps and used to estimate the
derivatives in the truncation error terms.

Shelf Break Domain—Constant Spacing

The constant spacing version of the shelf break domain is an
interesting test of both mass residuals and local truncation errors,
because no attempt has been made to place nodes in a manner that
minimizes error. The mass residuals �V �which uses the conven-
tional flux� and �S �which uses the consistent fluxes� are shown as
the solid lines in Figs. 3 and 4, respectively. The mass residual
�V is relatively small throughout most of the domain, except for
the shelf break region, where the residual reaches a maximum
magnitude of 29.9 m2. �The normalized residuals, which we men-
tion only as a means of comparison, would be in the range of
10−6–10−3% of the deviation from the still water volume through-
out most of the domain, and 0.6% of the deviation from the still
water volume in the shelf break region.� In contrast, the mass
residual �S shows a steady increase throughout the domain, and
its maximum magnitude of 1.6·10−6 m2 occurs at the land bound-

Fig. 3. Mass residuals �V for one-dimensional domains. Shelf break
�constant spacing� residuals are shown in solid line, shelf break
�LTEA� residuals are shown in dashed line, and shelf break �concept�
residuals are shown in dotted line.

Fig. 4. Mass residuals �S for one-dimensional domains. Shelf break
�constant spacing� residuals are shown in solid line, and shelf break
�LTEA� residuals are shown in dashed line.



ary on the right side of the domain. The third error norm, the
consistent flux discontinuity 	S, is shown as a solid line in Fig. 5.
The discontinuities increase throughout the domain, but there is a
noticeable change in their behavior at the shelf break, where the
discontinuities oscillate with a wavelength of 2�x.

We offer two observations based on the error norms them-
selves. First, the mass residuals based on the conventional fluxes
are significantly larger than the mass residuals based on the con-
sistent fluxes. This behavior is to be expected, because the con-
sistent fluxes are derived in a manner that is consistent with the
discretization of the governing equations, and they are evaluated
using computed solutions for that element. However, because of
the problems described above regarding the derivation of the con-
sistent fluxes for the GWC equation, the mass residual �S based
on these fluxes does not perfectly conserve mass on the element
level. Although the errors shown as the dashed line in Fig. 4 are
small, they are too large to be round-off error. Second, only the
mass residual �V has its maximum at the shelf break, which is
located at a distance of about 1,780 km into the domain. In con-
trast, the mass residual based on the consistent fluxes shows an
obvious change in behavior at the shelf break, but its magnitude
continues to increase on the shelf. The flux discontinuities 	S also
continue to increase on the shelf, and they show a 2�x oscillation
that is not seen in either of the other mass residual plots.

A summary of the truncation errors is shown in Table 1, and
the spatial distribution of the truncation errors for all terms in the
GWC and NCM equations are shown as solid lines in Figs. 6 and
7, respectively. The maximum truncation error for the GWC
equation is 4.27·10−3 m /s2, and the maximum truncation error
for the NCM equation is 2.07·10−3 m /s2. Table 1 also shows the
correlations between the truncation errors associated with the
terms in the governing equations and the mass and flux errors
associated with the three norms �V, �S, and 	S. To perform this
correlation, we computed Pearson’s product-moment correlation
coefficient, r, using the local truncation errors and each of the
mass error norms; the correlation coefficients are shown in the
last three columns of Table 1. Pearson’s product-moment correla-
tion coefficient is given by

r12 =
� �Yi1 − Y1��Yi2 − Y2�

�� �Yi1 − Y1�2 � �Yi2 − Y2�2
�21�

where Y1 and Y2�data sets and the overbar indicates a mean

Fig. 5. Consistent flux discontinuities 	S for one-dimensional
domains. Shelf break �constant spacing� discontinuities are shown in
solid line, and shelf break �LTEA� residuals are shown in dashed line.
�Neter et al. 1996�. The local truncation errors and the consistent

J

flux discontinuities 	S are node-based errors, whereas the mass
residuals �V and �S are element based; to compute the correlation
coefficient, we projected the mass residuals to the nodes by se-
lecting the larger of the residuals from the two adjoining ele-
ments. This correlation coefficient can range between −1 and 1;
for the purposes of mesh refinement, a coefficient of −1 might be
just as useful as a coefficient of 1, because it would still represent
a strong �albeit negative� correlation between truncation errors
and mass errors. As shown in Table 1, the magnitudes of the
correlation coefficients for the shelf break �constant spacing� do-
main are about 0.5 or less. However, it should be noted that the
coefficients for �V are about 2–3 times larger than the coefficients
for �S and 	S, indicating that the conventional fluxes produce
mass residuals that are a much more useful predictor of truncation
error in the model.

The final study in this section is convergence. As noted above,
the local truncation errors for the GWC and NCM equations are
formally second-order accurate in space, for constant-spacing do-
mains. Recent studies, such as Dawson et al. �2006�, indicate that
second-order convergence rates can be observed in both the el-
evation and velocity solutions of GWCE-based models, under
certain conditions involving the treatment of the boundary terms,
the discretizations of the terms in the governing equations, and
the design of the mesh. A similar convergence study for the shelf
break �constant spacing� grid was conducted, in which the grid

Fig. 6. Absolute values of truncation errors for all of terms in GWC
equation, for one-dimensional domains. Shelf break �constant
spacing� errors are shown in solid line, the shelf break �LTEA� errors
are shown in dashed line, and shelf break �concept� errors are shown
in dotted line.

Fig. 7. Absolute values of truncation errors for all of terms in
NCM equation, for one-dimensional domains. Shelf break �constant
spacing� errors are shown in solid line, shelf break �LTEA� errors are
shown in dashed line, and shelf break �concept� errors are shown in
dotted line.
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spacing was decreased systematically from 44.4 km to the mini-
mum of 244 m used in our fine �“true”� solution. This corre-
sponds to an increase in the number of nodes from 46 to 8,193.
Each grid spacing corresponds to a unique mesh; the root-mean-
square �RMS� errors for elevation and velocity �which are global
error metrics� were computed for each mesh by comparing the
coarse solution to the “true” solution at the third-to-last time step.
The convergence rates for elevation and velocity �not shown
graphically herein� were found to be 1.75 and 1.13, respectively.
The degradation of the convergence rates from the theoretical
second-order rate, especially with respect to velocity, can be at-
tributed to several factors, including the implementation of the
boundary conditions and the nonlinear behavior in the shelf break
region. For the velocity solution, the convergence rates at specific
nodes in the domain �not shown graphically herein� are consis-
tently second order, except in the shelf break region, where the
convergence rates deteriorate to first order. This degradation of
solution accuracy in the shelf break region limits the convergence
rate of the global RMS error.

If the mass residuals are to be used as a surrogate for local
truncation errors, then they should show similar convergence
rates. For the same convergence study described above, the three
error norms were computed for each mesh, and then a RMS norm
was computed for each error. These RMS norms were then plot-
ted over the range of grid spacings. The convergence behaviors
for the mass residuals �V and �S are shown in Figs. 8 and 9, and

Table 1. Summary of Truncation Errors for Shelf Break �Constant Spac

Truncation error terms

Nomenclature Expression

Generalized wave continuity equation
First �2� /�t2

Second G��� /�t�
Finite amplitude, Part 1 gh��2� /�x2�
Finite amplitude, Part 2 g����2� /�x2�
Advective, Part 1 ��U�� /�t� /�x

Advective, Part 2 ��HU�U /�t� /�x

Flux �G−����HU /�x�
Nonconservative momentum equation

Accumulation �U /�t

Advective U��U /�x�
Bottom friction �U

Finite amplitude g��� /�x�

Fig. 8. Convergence behavior for mass residuals �V
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the convergence behavior for the consistent flux discontinuities 	S

is shown in Fig. 10. Linear regressions through the points in these
figures produce a slope of 1.44 for the mass residual �V in Fig. 8
and slopes of unity for the error measures in Figs. 9 and 10. Thus,
they converge at rates similar to those of the elevation �1.75� and
velocity �1.13� solutions. In fact, this behavior is to be expected,
because the error norms are functions of the solution, and thus
their convergence rates should be similar to the convergence rate
of the solution.

It should be noted that, if an L� norm is used instead of RMS,
then all three mass residuals produce convergence rates near
unity. While not representative of global behavior, the L� norm is
a better metric for local error because it is a measure of the largest
error in the domain; hence, we believe it is more useful in a grid
refinement study that aims to minimize the largest errors. For that
reason, we use the L� norm in our mesh refinement examples
below.

Shelf Break Domain—LTEA

As noted earlier, the shelf break �LTEA� domain was designed
specifically to minimize local truncation error, and thus it should
be expected that ancillary quantities are minimized as well. The
mass residuals �V and �S for this domain are shown as dashed
lines in Figs. 3 and 4, respectively. The residual �V, which is
based on conventional fluxes, still has a peak in the shelf break
region, but its maximum of 3.083 m2 is an order of magnitude

omain

Max error
�m /s2�

Correlation coefficient r

… to �V … to �S … to 	S

2.56E-03 0.542 0.166 0.287
1.77E-05 0.556 0.063 0.281

1.33E-08 0.231 0.136 0.170

1.67E-03 0.541 0.167 0.287

3.37E-06 0.541 0.167 0.287

8.98E-07 0.540 0.167 0.286

8.57E-04 0.541 0.167 0.287

1.29E-05 0.554 0.171 0.293

2.54E-03 0.541 0.170 0.289

6.69E-05 0.539 0.179 0.293

5.51E-04 0.541 0.168 0.287

3.76E-04 0.542 0.172 0.291

1.55E-03 0.541 0.169 0.288

Fig. 9. Convergence behavior for mass residuals �S
ing� D



less than the maximum error in the shelf break �constant spacing�
domain �shown as the solid line in Fig. 3� and on the same order
of magnitude as the other errors in the domain. The residual �S,
which is based on the consistent fluxes, now shows uniform errors
throughout the domain. Its qualitative behavior again matches
closely that of the consistent flux discontinuity 	S, which is shown
as a dashed line in Fig. 5.

The truncation errors for the shelf break �LTEA� domain are
summarized in Table 2, and the errors for the GWC and NCM
equations are shown as dashed lines in Figs. 6 and 7, respectively.
The LTEA method has its intended effect on the truncation errors;
the maximum error for the GWC equation decreased by about
two orders of magnitude, and the maximum error for the NCM
equation decreased by more than one order of magnitude. In both
cases, the peak at the shelf break still exists, but it is both smaller
and narrower. A decrease in the error norm based on the conven-
tional fluxes corresponds to a similar or larger decrease in the
truncation errors. A qualitative comparison of the mass and trun-
cation errors would suggest that the mass residual �V �the dashed
line in Fig. 3� correlates to the NCM truncation errors �the dashed
line in Fig. 7�, because both show a significant peak at the shelf
break, and that the mass residual �S �the dashed line in Fig. 4�
correlates to the GWC truncation errors �the dashed line in Fig.
6�, because both show uniform errors throughout the domain. The
quantitative comparison in Table 2 lends support to this observa-
tion, although the correlations are relatively weak, and there is

Table 2. Summary of Truncation Errors for Shelf Break �LTEA� Domai

Truncation error terms

Nomenclature Expression

Generalized wave continuity equation
First �2� /�t2

Second G��� /�t�
Finite amplitude, Part 1 gh��2� /�x2�
Finite amplitude, Part 2 g����2� /�x2�
Advective, Part 1 ��U�� /�t� /�x

Advective, Part 2 ��HU�U /�t� /�x

Flux �G−����HU /�x�
Nonconservative momentum equation

Accumulation �U /�t

Advective U��U /�x�
Bottom friction �U

Finite amplitude g��� /�x�

Fig. 10. Convergence behavior for mass residuals 	S
J

variability in the correlations on a term-by-term basis in both
equations. More importantly, the LTEA method has succeeded in
minimizing the maximum errors and distributing mass and trun-
cation errors over the domain, and thus the correlation is not
nearly as significant or uniform as it was in the shelf break �con-
stant spacing� domain.

Summary

The results of our analyses in one dimension indicate that the
conventional fluxes produce mass residuals, �V, that are more
strongly correlated with truncation errors. From the analysis with
the shelf break �constant spacing� domain, we saw that: �1� the
mass residuals were larger in magnitude, which supports the ex-
pectations produced during the derivation; �2� these residuals
have their maximum at the shelf break itself, which is also where
the truncation errors peak; and �3� this relationship can be quan-
tified, as the correlation coefficients between the mass residuals
and the truncation errors are two to three times larger than corre-
lations using other error measures.

Examples of Mesh Refinement Using Mass
Residuals

It remains to be seen whether these mass residuals can be used as
a practical error metric for mesh refinement. In this section, we
present two examples of mesh refinement using the mass residu-
als, �V, based on the conventional fluxes. In the first example, we
begin with the shelf break �constant spacing� domain and move
nodes until the maximum mass residual is less than the corre-
sponding maximum mass residual from the shelf break �LTEA�
domain. In the second example, we begin with an irregular, two-
dimensional mesh of the Bight of Abaco domain and add nodes
until the maximum mass residual is less than a prescribed value.

Mesh Refinement in One Dimension

In this section, we demonstrate the development of a grid that
uses mass residuals as the criterion for mesh refinement. We begin
with the shelf break �constant spacing� domain described above,
and we make the following assumptions:

Max error
�m /s2�

Correlation coefficient r

… to �V … to �S … to 	S

8.58E-05 −0.080 0.285 0.449
6.10E-05 −0.139 0.442 0.581

3.87E-08 −0.245 0.584 0.719

3.43E-05 −0.030 0.118 0.263

8.08E-08 0.085 −0.222 −0.133

1.20E-07 0.072 −0.170 −0.026

1.69E-05 0.101 −0.266 −0.180

4.75E-06 0.152 −0.231 −0.219

1.67E-04 0.074 −0.176 −0.057

2.95E-06 −0.166 0.473 0.592

7.27E-05 0.078 −0.189 −0.077

2.15E-06 0.135 −0.316 −0.224

9.16E-05 0.079 −0.191 −0.074
n
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1. The criterion should be the mass residual �V, which is based
on the conventional fluxes, because we have shown that this
residual is a better indicator of truncation errors than the
error norms �S and 	S, which are based on the consistent
fluxes;

2. The total number of nodes should remain constant. In other
words, in order to place a node in a region with large mass
residuals, a node must first be removed from a region with
small mass residuals. The shelf break �constant spacing� do-
main has 46 nodes;

3. The removal of a node in a region with low mass balance
errors should not affect the neighboring nodes. Thus, when a
node is removed, its neighbors should not be moved to com-
pensate. In effect, the grid spacing in that region is doubled,
and it can be increased further during successive iterations;

4. When a node is added to a region with high mass balance
errors, it should be placed at the midpoint of an existing
element. In effect, the grid spacing in that region is halved;
and

5. When a node is added, its bathymetry should be computed
from a linear interpolation of the surrounding bathymetries.
In an automated mesh-refinement scheme, a background grid
and higher order interpolation could be used to compute
bathymetries. However, this is not a concern in this example,
because the shelf break �constant� domain uses linear seg-
ments of bathymetry, as shown in Fig. 1.

These assumptions were made as much for convenience as for
scientific correctness. �It should be noted that some of these
assumptions, such as the effective “doubling” of grid spacing
when a node is removed, do not have convenient analogues in
two dimensions.� Nonetheless, they allow for a grid develop-
ment scenario that illustrates how mass residuals can be used to
generate a mesh that minimizes truncation errors. And, by keep-
ing the number of nodes constant, we can compare our concept
mesh to the LTEA mesh with 46 nodes. Future work would
automate this procedure; for now, the mesh is refined iteratively,
by moving five nodes at a time and then generating an updated
solution.

We begin with the mass residuals �V based on the conventional
fluxes shown in Fig. 3. For the shelf break �constant spacing�
domain, the largest magnitude error is about 29.9 m2, and it oc-
curs at a distance of about 1,780 km, which is near where the

Table 3. Summary of Truncation Errors for Shelf Break �Concept� Dom

Truncation error terms

Nomenclature Expression

Generalized wave continuity equation
First �2� /�t2

Second G��� /�t�
Finite amplitude, Part 1 gh��2� /�x2�
Finite amplitude, Part 2 g����2� /�x2�
Advective, Part 1 ��U�� /�t� /�x

Advective, Part 2 ��HU�U /�t� /�x

Flux �G−����HU /�x�
Nonconservative momentum equation

Accumulation �U /�t

Advective U��U /�x�
Bottom friction �U

Finite amplitude g��� /�x�
continental shelf begins its steep descent, as shown in Fig. 1. All
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of the significant mass residuals occur in this region. Thus, to
minimize these mass residuals, we remove nodes from the deeper
parts of the domain and add them to the shelf-break region. After
four iterations, in which we move five nodes at a time and recom-
pute the mass residuals, we obtain the node placement depicted at
the bottom of Fig. 2.

We can make several observations based solely on the node
distribution. First, in order to minimize the mass residuals �V, the
majority of the nodes were placed in the region where the shelf
begins its steep descent �at a distance of about 1,800 km�. The
grid spacing in this region is about 2,700 m, or 16 times smaller
than the original constant node spacing. Second, to effect this
decrease in the node spacing along the shelf break, we removed
nodes from the deep water portion of the domain. The grid spac-
ing in the deep water portion was increased to as high as
177,000 m, or four times larger than the original grid spacing.
Third, after four iterations, a total of 20 nodes were moved during
the mesh development.

The effect of this mesh on simulation results is dramatic. The
mass residuals �V are shown as a dotted line in Fig. 3. Adding
nodes at the shelf break decreases the mass residuals in that
region, and removing nodes from the deep water increases the
mass residuals in that region �compared to the results from the
regular mesh shown as the solid line in Fig. 3�. The end result is
a domain that has a more uniform distribution of error. Note that
the largest magnitude residual is 5.53 m2, which is a decrease of
about 81% from the maximum residual produced by the original,
constant-spacing mesh. Further iteration on node placement,
using a more sophisticated method that placed nodes at locations
other than the midpoint of elements and that limited the relative
change of adjacent elements, would further decrease these mass
residuals.

Similar behavior is observed with respect to truncation errors.
The dotted line in Fig. 6 shows the truncation errors for all of the
terms in the GWC equation, and the dotted line in Fig. 7 shows
the truncation errors for all of the terms in the NCM equation.
Note that, although both figures depict peaks at the shelf break,
there are nontrivial truncation errors in the deep water region of
the domain. Qualitatively, the truncation errors match well the
mass residuals �V; i.e., they are distributed throughout the
domain.

It is important to examine the effect of this mesh refinement in

Max error
�m /s2�

Correlation coefficient r

… to �V … to �S … to 	S

1.24E-04 0.403 0.166 −0.203
5.27E-05 0.248 0.085 −0.441

6.25E-08 0.316 −0.043 −0.722

8.15E-05 0.377 0.159 −0.050

1.93E-07 0.299 0.141 0.097

1.65E-08 0.325 −0.012 −0.515

4.12E-05 0.295 0.141 0.108

1.13E-06 0.317 0.142 0.077

2.11E-05 0.449 0.138 −0.649

1.08E-05 0.433 0.090 −0.679

2.52E-06 0.400 0.186 −0.166

4.73E-06 0.175 0.067 −0.441

9.47E-06 0.351 0.134 −0.486
ain
comparison to the original shelf break �constant spacing� domain



and to the shelf break �LTEA� domain, which was developed by
minimizing local truncation error of the linearized, harmonic mo-
mentum equation. Table 3 summarizes the truncation errors for
the shelf break �concept� domain. Note that the truncation errors
from the concept domain are considerably smaller than those for
the constant-spacing domain. An 81% decrease in the maximum
mass residual �V created a decrease of one order of magnitude in
the maximum truncation error for the GWC equation and a de-

Fig. 11. Bathymetry of Bight of Abaco, Bahamas, domain with tida

Fig. 12. Meshes of refinement study: �a� initial coars
J

crease of two orders of magnitude in the maximum truncation
error for the NCM equation. Also note that the truncation errors
from the concept domain are comparable to those from the LTEA
domain; in fact, the NCM truncation errors are smaller in the
concept domain. �This behavior is most likely due to the fact that
Hagen et al. �2000, 2001� used the linear harmonic form of the
NCM equation to develop the shelf break �LTEA� domain,
whereas this study uses the full, nonlinear, transient form of the

rding stations indicated in figure �adapted from Grenier et al. 1995�

of 926 nodes; �b� final refined mesh of 1,178 nodes
l reco
e mesh
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NCM equation.� Thus, not only does this method of mesh refine-
ment decrease the truncation errors, it does so as effectively as a
grid that was developed by explicitly minimizing truncation
errors.

It should be noted that the correlation coefficients for �V and
the shelf break �concept� domain in Table 3 are significantly bet-
ter than the respective correlation coefficients for the shelf break
�LTEA� domain in Table 2. Even after we moved 20 nodes and
produced a nonuniform mesh that minimizes both mass residuals
and truncation error, the correlations are still 0.403 for the GWC
equation and 0.449 for the NCM equation. The respective corre-
lations for the shelf break �LTEA� domain are −0.080 and 0.074.
Thus, even at this stage in the mesh refinement process, the mass
residual �V can still be used as a criterion for further refinement;
its utility is not lost.

In summary, by beginning with a mesh that had a constant
node spacing and then moving nodes to minimize the mass re-
sidual �V based on the conventional fluxes, we developed a mesh
that decreased the maximum mass residual by 81% and decreased
the maximum truncation errors by one or two orders of magni-
tude. In effect, we replicated the positive qualities of the shelf
break �LTEA� domain without having to compute any truncation
errors during the refinement of the mesh.

Mesh Refinement in Two Dimensions

In this section, we test the concept of using elemental mass re-
siduals as a criterion for mesh refinement in a two-dimensional
setting. In particular, we examine the Bight of Abaco, Bahamas

Fig. 13. Velocity station graphs for Stations 1 and 2, whose location
and �D� show y component of velocity. Dashed line shows results fro
shows results from “true” solution.
domain; Fig. 11 shows the bathymetry of the area. Land bound-
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aries, consisting of the islands around the bight, are treated as
no flow boundaries, while the ocean boundary between the is-
lands of Abaco and Grand Bahama along the southwest edge of
the domain is forced with five tidal constituents: O1, K1, N2, M2,
and S2. The coarse mesh for this domain consists of 1,696 non-
uniform elements and 926 nodes, as shown in Fig. 12�A�. Other
parameters for the simulation are as follows: bottom friction
factor in the Chezy formulation of 0.009, lateral eddy viscosity
of zero, numerical G parameter of 0.009 s−1, time step of 10 s,
Coriolis parameter of 5.9·10−5 s−1, and a simulation time of 12
days. After a 10-day spinup, simulation results were recorded
over the last 2 days, and elevation and velocity changes were
analyzed at stations throughout the domain. A true solution was
established by successively refining the mesh until the time series
data no longer showed significant differences from the previous
iteration; each iteration quadrupled the number of elements. It
was found that the solution converged after the second refine-
ment, thus a grid consisting of 27,136 elements and 13,880 nodes
was used as the true solution.

The mesh refinement procedure was similar to that used in the
one-dimensional example above, in that the criterion for refine-
ment was the mass residual �V. However, a LTEA grid for this
domain does not exist, so we could not use its mass balance and
truncation error properties as the goal of our concept domain.
Thus, instead of moving around the existing nodes as we did in
the one-dimensional example, we simply added nodes in regions
with large mass residuals. After each iteration, these regions were
refined until the absolute residuals were an order of magnitude

hown in Fig. 11. �A� and �C� show x component of velocity, and �B�
ial mesh, dotted line shows results from refined mesh, and solid line
s are s
m init
less �chosen arbitrarily for this proof-of-concept application� than



those of the coarse grid. Other differences from the procedure
used in the one-dimensional example are as follows: �1� elemental
residuals were aggregated to node points because the mesh gen-
eration software is nodal based �“hand” refinements without the
nodal aggregation showed similar results, although the aggrega-
tion process tended to space out errors among patches of elements
instead of single elements�; �2� after a particular region was re-
fined, we “relaxed” the mesh in the adjacent area in order to
provide a smooth transition from fine to coarse elements and to
avoid poorly proportioned triangles; and �3� we did not remove
nodes from portions of the mesh with lower mass residuals be-
cause the original resolution was the minimum needed to resolve
all constituents and their nonlinear interactions �Grenier et al.
1995�.

Results show that, with only one refinement iteration, nearly
the entire domain met the criteria of lowering elemental mass
residuals by an order of magnitude. In fact, the only area that
exceeded the criterion was a small patch of elements near the
Mores Island �see Fig. 11�. Two more iterations of selective mesh
refinements in this area succeeded in meeting the criterion over
the entire domain. Fig. 12�A� shows the initial coarse mesh �1,696
elements and 926 nodes�, while Fig. 12�B� shows the final refined
mesh �2,180 elements and 1,178 nodes�. Comparing these two
figures, we note that the refinement occurred in areas with either
a steep topography change or where the velocity field is forced to
change direction because of the presence of a land boundary, e.g.,
note the areas of refinement in Fig. 12�B� around Mores Island
and near the Grand Bahamas Island. This behavior is consistent
with past observations of the need to provide increased resolution
in areas of rapidly changing topography or high advective gradi-
ents �Hagen et al. 2001�.

After each refinement, we compared simulation results from
the elevation and velocity stations to the true solution. For all of
the stations, we found that there is no significant change in the
elevation response between the different meshes; however,
changes in the velocity field depend on location within the
domain. To simplify the discussion, we present results from
only two of the stations; the locations of these stations are shown
in Fig. 11, and the velocity results at these stations are shown in
Fig. 13. In Figs. 13�A� and 13�B�, we show the velocity results
for Station 1, which is near Mores Island and in a region that
needed refinement. For the initial coarse mesh �dashed line�, the
velocity is either under- or overpredicted for each tidal cycle, as
compared to the true solution �solid line�. However, with three
iterations of mesh refinement, the velocity results �dotted line�
match the true solution. Remarkably, a mere 27% increase in the
number of nodes produces a result that is as accurate as the mesh
used for the true solution, which had a 1,400% increase in the
number of nodes. In Figs. 13�C� and 13�D�, we show the velocity
results for Station 2, which is located in a region that did not need
refinement. Note that the velocity field is unaffected by the mesh
refinement; all three lines plot on top of each other. These results
indicate that the mesh refinement influences results locally for this
domain, although we temper this with observations from other
studies that refinement can influence far-field regions �Hagen
et al. 2000, 2001; Luettich and Westerink 1995�. Finally, it is
interesting to note that this type of station response follows that
seen in previous studies, wherein the velocity solution is more
significantly affected than elevations by variation in the numerical
parameter G, which also significantly impacts local mass balance

�Kolar et al. 1994�.
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Conclusions

In this paper, we investigated local mass residuals as a criterion
for mesh refinement. In a pair of examples using an idealized
one-dimensional shelf break domain, we showed that mass re-
siduals based on conventional fluxes correlate more strongly with
truncation errors than did our other error norms based on consis-
tent fluxes, and thus are a better indicator of problem areas. Then,
in examples in one and two dimensions, we demonstrated the
development of meshes by minimizing local mass residuals. In
one dimension, the resulting mesh exhibited: �1� mass residuals
that were better than the constant-spacing domain and slightly
larger than the LTEA mesh; and �2� truncation errors that were
comparable to or better than the truncation errors produced by the
LTEA mesh. In two dimensions, the maximum mass residual was
decreased by an order of magnitude after only three iterations of
refinement, and the velocity stations in the regions of refinement
agreed with the true solution. Consequently, mass residuals based
on a conventional flux calculation show real promise as a crite-
rion for mesh refinement, particularly because they can be incor-
porated into a dynamic meshing algorithm.
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