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INTRODUCTION

The present implementation (version 26.XX) of the 2D/3D hydrodynamic model
ADCIRC (Luettich et al, 1992, Westerink et al, 1994) makes no allowance for the
flooding or drying of tidal flats during the course of a tidal cycle or for the inundation and
recession of water from low lying coastal lands in response to coastal storms. Rather,
ADCIRC assumes the land-water boundary is fixed regardless of the water surface
elevation. To accommodate this assumption, (i) bathymetric water depths are artificially
deepened near shore so that nodes never become dry during falling water levels and (ii)
coastlines are assumed to represent infinitely high vertical walls which water piles up
against during rising water levels. While these assumptions are reasonable for modeling
large scale coastal flows, they improperly represent frictional dissipation and finite
amplitude nonlinearities in near shore regions and they also prohibit the over land
propagation of flood waters associated with storm surge. As a result, coastal storm surge
elevations are often over-estimated and the extent of inundation, a critical parameter in the
use of hydrodynamic models for coastal planning, can not accurately be assessed.

Prior to implementing any flooding and drying capability into ADCIRC, we have
reviewed flooding and drying algorithms and capabilities as reported in the published
literature. A summary of our findings is presented below. The remainder of this report
describes our implementation, testing and assessment of several potential flooding and
drying algorithms in a one-dimensional (vertically and laterally integrated, constant width)
analogue of ADCIRC. The simplicity of the 1D code allowed a much more rapid and
thorough assessment of these approaches than would have been possible using the full
ADCIRC model. To this point we have concentrated on flooding and drying of sloping
inclines rather than flow across intermittently submerged barriers. Provided the flow
across a barrier is assumed to exit the computational domain, this feature can be
implemented in ADCIRC in a straight forward manner as a discharge boundary condition
with the discharge rate determined using an appropriate weir formula.

LITERATURE SURVEY

The inclusion of flooding and drying capabilities in a hydrodynamic model is a
difficult problem. Past attempts to deal with these processes can be broadly lumped into
two categories, spatially deforming computational grid schemes and spatially fixed
computational grid schemes.

The use of spatially deforming grids requires the transformation of the governing
equations into a horizontal coordinate system that is advected with the mean flow. For
gvery time step the water level, the horizontal velocity and the position of the grid is
recomputed, Although this approach is conceptually attractive, in practice it can lead to
highly deformed grids and is typified by high computational costs. Consequently, it has
primatily been restricted to applications involving idealized test problems, (Sielecki and



Waurtele, 1970; Lynch and Gray, 1980; Johns 1982; Akanbi and Katopodes, 1988; Siden
and Lynch, 1988; Austria and Aldama, 1990).

The most common approach to flooding and drying in operational hydrodynamic
models assumes the computational grid is fixed in space. At the beginning of the model
simulation each cell (for a finite difference model) or element (for a finite element model)
is designated as being either “wet” or “dry”. Wet areas patticipate in the hydrodynamic
calculations while dry areas do not. At designated times (which may or may not be every
model time step) an assessment is made of whether additional areas in the grid have
become wet or dry and therefore whether they will participate in the next model
computation. Since the grid is fixed in space, areas are 1estricted to wetting or drying in
whole grid increments. Examples of this type of wetting and drying strategy can be found
in Reid and Bodine (1968), Flather and Heaps (1975), Yeh and Chou (1979), Hubbert and
Flather (1987), Leendertse (1987), Yu et al. (1990), Cialone (1991), and Jelesnianski et al.
(1992). We note that the specific implementation details of the wetting and drying
algorithms in fixed grid models vary from model to model. For example WIFM assumes
cells wet and dry according to a broad crested weir formula, (Cialone, 1991). Othet
models use the long wave equations (often without the advective terms included) to wet
and dry cells, (Reid and Bodine, 1968; Leendertse, 1987; Jelesnianski et al., 1992). Also,
most operational models allow for the possibility of sub grid scale barriers by using weir
formulae in place of or in combination with the long wave equations when these features
are encountered. A consistent problem with the fixed grid approaches is numerical noise
generated when grid cells are turned on and off. Bottom friction is fairly effective at
damping this noise in shallow water, although other strategies (such as limiting the
frequency at which cells can wet and dry) have been used to control more persistent noise
problems.

Our search of the literature of existing flooding and drying algorithms suggests
that deforming grid schemes offer a methodology that closely adheres to the long wave
equations. However, their significant computational expense makes them presently
impractical for use in an operational model. Fixed grid schemes, despite their often ad hoc
nature, have been implemented in operational models and demonstrated to give realistic
flooding and drying estimates. Therefore, we have initially chosen to explore
implementing a spatially fixed computational grid scheme in ADCIRC.

SUMMARY OF POTENTIAL FIXED GRID FLOODING AND DRYING
ALGORITHMS

We have implemented and tested three spatially fixed computational grid
algorithms for possible inclusion into ADCIRC. The rationale and implementation of
these are discussed below.

Pure Drag Coefficient Approach (DCA)




The DCA assumes that the drag coefficient can be set high enough at “dry” nodes
that it will effectively prevent water from moving at those nodes. Therefore, both wet and
dry nodes patrticipate equally in the model computations.

The implementation of the DCA is quite easy. To cold start the model, the water
level departure from the geoid, § , is defined as zero for all “wet” nodes (bathymetric
depths below the geoid) and as |h|+ H i, where Hp, is a minimum depth, (on the order
of 1 cm), for all “dry” nodes (bathymetric depths above the geoid). All model
computations proceed essentially as they are presently implemented in ADCIRC. The
only difference is that a new value of the drag coefficient must be computed throughout
the model domain every time step, depending on the water depth. At present we simply
multiply the deep water drag coefficient, C fmin, by a large number (e.g., 100 - 1000) when
H <2 H i Also, if the water depth drops below H,;, due to leakage at diy nodes, it is
set back to H .. A particular attraction of the DCA is that the GWCE system matrix
remains stationary in time and therefore needs only to be set up and decomposed once
during the model simulation. This provides significant computational savings when the
direct matrix solver is used with a nonlumped, implicit, GWCE formulation.

Our experience with the DCA in 1D has identified two difficulties with this
approach. (i) It is difficult to specify a drag coefticient that effectively freezes water
motion at dry nodes without causing the model to become unstable. Consequently, we
must continually raise the water depths at “dry” nodes back up to Hn;,, thereby adding
mass to the system. In the test problems presented below, this has not appeared to have
any noticeable impact on the solutions. (ii) Elements connected to both wet and dry
nodes may have an undesirable behavior due to the fact that the water surface slope is
effectively constrained at the dry node and fiee to move at the wet node. For example,
consider water moving up a sloping incline. After a node first “wets” its water level may
still be below that at the adjacent upslope dry node. The resulting water level gradient
between these two nodes will create a physically unrealistic force that is adverse to the
direction of water advancement and that may cause water to temporatily flow downslope
(or “backwash”) at the newly wetted node.

Nodal Wetting Approach {(NWA)

The NWA assumes that flooding and drying can be represented by turning areas of
the grid on and off on a node by node basis. Conceptually, in 1D, this like raising and
lowering one end of a row of dominoes that are laid flat and connected end to end using
hinges. We note that the NWA is physically quite similar to the DCA, except that the
NWA formally turns nodes off that have become dry while the DCA relies on high fiiction
to effectively turn the nodes off.

The implementation of this approach is not quite as easy as the DCA. To cold
start the model, T is defined as zero for all “wet” nodes and as |h|+ H . for all “dry”
nodes. At subsequent time steps wet node computations proceed as they are presently
implemented in ADCIRC. However, at all dry nodes, T #1 (where k+1 denotes the time



level presently being solved for) is fixed at its value at time level k by placing a 1 on the
diagonal of the GWCE system matrix and by setting the right hand side equal to § .
After solving the GWCE equation for € , the water depth is checked at each node in the
grid. If a node is currently classified as wet and the water depth drops below the minimum
depth, the node is considered to have dried. If a node is currently dry and T at any
adjacent wet node rises above , at the node being checked, the node is considered to
have wetted. The velocity is zeroed out at dry nodes.

The implementation of the NWA in ADCIRC is somewhat unatiractive because
the system matrix in the GWCE must be modified each time a node changes its status from
wet or dry. When this happens, the banded GWCE matrix must be re-decomposed if the
direct matrix solver is used with a nontumped, implicit formulation of the GWCE. This
disadvantage is rtemoved, however, if the iterative solver (e.g., preconditioned conjugate
gradient solver) is used or a lumped, explicit form of the GWCE is solved.

Our experience with the NWA in 1D has identified two difficulties with this
approach. (i) Mild shocks are introduced into the computations when nodes are turned
on and off. (ii) Elements connected to both wet and diy nodes have the same undesitable
behavior as described for the DCA. In practice, bottom friction helps to damp out
numerical noise associated with the shocks and reduce physically unrealistic “backwash”.

Elemental Wetting Approach (EWA)

The EWA assumes that flooding and drying can be represented by turning areas of
the grid on and off on an element by element basis. Conceptually, this approach is similar
to most of the previously employed fixed grid flooding and drying schemes that have been
applied in finite difference codes. In 1D, the EWA assumes a slope is divided up by a
series of removable, vertical barriers, {(one barrier is located at each finite element node).
The height of each barrier is equal to the ground elevation of the next node up the slope
plus the minimum allowed water depth. All barriers whose tops lie below the still water
level are removed. If the water level recedes, it moves down the face of a barriet until it
hits the toe of the barrier plus the minimum depth. At that time the barrier at the next
node down the slope is put in place thereby trapping all water up stream of it and causing
the element to “dry”. As the water level recedes further, it moves down the face of the
newly placed batrier. If the water level rises, it moves upward along the face of a bartier
until it reaches the top. When the top is reached the barrier is removed and the next
element upstream “wets”. As the water level rises further, it moves up the face of the
barrier located at the next node up the slope. The result of this approach is a stair step
like series of pools of water, each having a level surface, in the area of the domain that is
above the present water level.

The implementation of this approach is comparable to the NWA. To cold start the
model, € is defined as zero for all “wet” nodes and as |A|+ H min for all “dry” nodes,
similar to the NWA and DCA. At subsequent time steps, computations proceed as they
are presently implemented in ADCIRC for all nodes connected to at least one wet element.



Vertical wall boundaries are assumed along the land-water interface which is located at
nodes lying between adjacent wet and dry elements. At all nodes surrounded by dry
elements, T k1 s fixed at its value at time level k as done in the NWA. After solving the
GWCE equation for T , the water depth is checked at each node in the grid. If the water
depth drops below the minimum depth at an active node, all elements containing this node
are considered to have dried. If € at a node located on the land-water interface rises
above T at the adjacent diy node, the connecting element is considered to have wetted.
New land-water boundary nodes are then identified. Velocities are calculated as presently
implemented in ADCIRC for all nodes connected to wet elements. The velocity is zeroed
out at all nodes that are surrounded by dry elements.

The implementation of the EWA in ADCIRC has the same disadvantage as the
NWA,; the system matrix in the GWCE must be modified each time an element changes its
status from wet or dry. This means that the banded GWCE matrix must be re-
decomposed each time any node changes status if the direct matrix solver is used with a
nonlumped, implicit formulation of the GWCE. This disadvantage is removed, however, if
the iterative solver is used or a lumped, explicit form of the GWCE is solved.

The primary difficulty we have experienced with the EWA in 1D is that rather
strong shocks are introduced into the computations when elements turn on and off. Since
the water level transitions are fairly smooth, these shocks must originate from the sudden
change in velocity when a barrier is introduced or removed. However, as found for the
NWA, bottom friction is fairly effective at damping out numerical noise associated with
the resulting shocks in 1D.

DEPTH DEPENDENT DRAG COEFFICIENT

To complement the flooding and drying schemes described above, we have
designed a drag coefficient that is inversely proportional to water depth as:

1+(—H—°)
H

where Cy is the standard 2D drag coefficient used in ADCIRC (applied using either a
linear or quadratic friction relationship) and H is the total water depth. This relation has
the behavior that C; approaches C; i, in deep water , (H > H,), and ' i (H,/H)' in
shallow water, (H < H,), Figurte 1. The exponent 8 determines how rapidly C;
approaches each asymptotic limit and y determines how 1apidly the fiiction coefficient

increases as the water depth decreases. We note that if Cyy, = gnz/ HY and y =1/3,
where g is the gravitational constant and # is the Manning coefficient, Eq. (1) will

Cf = Cfmin (1)
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provide a Manning equation type frictional behavior for H < H,, Figure 1. Examples of
the relationship between C ¢y and 22 fory = 1/3 are given in Table 1.

Table 1. Comparison between C fmin and 72 if Cf pin = g0/ HY

PrrprTREIYS

C f min n n n n

0.0015 0.016 0.018 0.020 0.023
0.0020 0.019 0.021 0.024 0.026
0.0025 0.021 0.023 0.026 0.030
0.0030 0.023 0.025 0.029 0.032
(.0040 0.026 0.030 0.033 0.037
0.0050 0.030 0.033 0.037 0.042
0.0100 0.042 0.047 ’ 0.053 0.059

The DCA is the only flooding and drying scheme that specifically requires an
elevated drag coefficient in shallow water (to keep water from running off “dry” areas).
However, there is considerable observational evidence from fully turbulent open channel
flows for the Manning drag law, (e.g., Chow 1959). Therefore it may be appropriate to
use the Manning drag law in shallow coastal flows (whether or not flooding and drying
occur). Eq. (1) allows the drag coefficient to remain constant at typical continental shelf
water depths (as has been used in most previous ADCIRC simulations) and to adopt a
Manning type behavior in shallow water.

We have used the Manning’s equivalent to Eq. (1) in all flooding and drying test
cases ptesented below.

TEST PROBLEMS

The three flooding and drying schemes outlined have been implemented in a one-
dimensional (vertically and laterally integrated, constant width) analogue of ADCIRC.
The test problems presented below are all designed to test tidally driven flooding and
drying on sloping inclines. In all cases the model was run until a dynamic equilibrium was
reached and the model results were stable from one tidal cycle to the next.

Flooding and Drying of a Frictionless Incline

One of the few flooding and drying problems for which an analytical solution can
be found is the propagation of a long wave onto a sloping shore, Carrier and Greenspan
(1958). This is a very difficult problem to solve numerically since without bottom friction
there is little to damp noise generated in the solution. To our knowledge previous
numerical solutions to this problem have all used deforming grid schemes (Sielecki and



Wurtele, 1970; Lynch and Gray, 1980; Johns 1982; Siden and Lynch, 1988), which appear
to generate considerably less numerical noise than fixed grid schemes.

We were unable to obtain stable numerical solutions for this problem using the
DCA or the EWA, with or with out the advective terms included in the computation, for
any slopes of practical interest. However, we were able to obtain realistic, albeit
somewhat noisy, numerical solutions for reasonable inclines using the NWA. Figures 2a-j
compare analytical and numerical water levels and depth-averaged velocities every tenth of
a tidal cycle in the downstream half of the domain for the following 1D channel:

channel length, 24km

bathymetric depth at open end, 5m below still water level
bathymetric depth at closed end, 1m above still water level
linear slope between open and closed end

numerical grid spacing, Ax = 250m

time step, Af = 30s, (At\gh /Ax) =085

open end forcing 0.25m amplitude, 6h period.
Hupin = 1cm

lumped, explicit GWCE formulation

no advective terms

Comparing Figures 2a and 2f indicates that the land-water boundary moves
horizontally about 4.5 km and vertically about 1.2 m from high to low tide. The NWA
water level solution is reasonably smooth and close to the analytical solution throughout
the entire tidal cycle; the most significant errors occur near the front during rising water
levels (Figures 2g-j). Away from the front the NWA velocity solution tracks the analytical
solution reasonably well, although overali it is much noisier than the elevation solution and
clearly suffers from the “backwash” problem near the front (Figures 2a-g). The strong
downslope flows at the front as the tide moves from low slack water into the flooding
cycle appear to introduce signpificant numerical instability into the velocity solution,
Figures 2h-j. However, this quiets down by the time the tide reaches high slack water.
We note that the solution is completely unstable if a consistent (as opposed to lumped) or
partially implicit (as opposed to fully explicit) formulation was used tor the GWCE or if
the advective terms are included in the solution.

Flooding and Drying of a Frictional Incline, Case #1

This test case replicates the frictionless problem, except that realistic bottom
friction has been added. The resulting problem may be typical of relatively weak forcing
on a mild sloping shore (25cm/km). The specific problem parameters are:

channel length, 24km

bathymetric depth at open end, Sm below still water level
bathymetric depth at closed end, 1m above still water level
linear slope between open and closed end



numerical grid spacing, Ax = 250m
time step, At = 30s, (At‘,/ gh /Ax) =085

max
open end forcing 0.25m amplitude, 6h period.
Hyin = 1cm
lumped, explicit GWCE formulation
advective terms included
C fmin = 00025, H,=1m,8 =10,y =1/3
Cy=300Csmy it H<2H, in DCA

Water levels and depth-averaged velocities every tenth of a tidal cycle in the
downstream half of the domain are presented in Figures 3a-j for model runs using the
three flooding and drying algorithms. Due to the presence of friction, the excursion of the
land-water boundary is smaller than in the previous test case. (In this problem the
excursions are approximately 2km and 0.8m in the horizontal and vertical directions,
respectively.) All three algorithms give very similar water level predictions throughout the
domain. (Note, for the EWA, only the water level for the downstream element attached
to each node has been plotted.) The largest differences occur in the velocity solutions
near the front where the EWA solution is more damped than the DCA and NWA
solutions. Despite these differences in the velocity solutions, the difference in flux is small
due to the shallow water depths.

Beyond about 21.75km, the channel never floods and a steady downslope velocity
of about 0.2 m/s develops for the DCA. This was the minimum amount of leakage we
could enforce for this method since the code became unstable if a higher drag coefficient
was used for the “dry” nodes. To balance this leakage it was necessary to continuously
add water at the upstieam end. The total volume of water (per unit width) added during a
6h tidal cycle was approximately 40m®. As expected, the NWA solution is quite similar to
the DCA solution, except that the former is forced to have zero velocity on the
permanently dry nodes

Floodine and Diving of a Frictional Incline, Case #2

This case demonstrates the algorithm behavior for a stronger forcing and steeper
sloping shore (1m/km). The specific problem parameters are:

channel length, 24km

bathymetric depth 10m below still water level for first half of channel length
bathymetric depth at closed end, 2 m above still water level

linear slope between channel mid point and closed end

numerical gtid spacing, Ax = 250m

time step, At =155, (At@/Ax) =06

open end forcing, 0.5m amplitude, 6h period.
lumped, explicit GWCE formulation



advective terms included
C fmin = 00025, H,=1m,0 =10,y = i/3

C=300Cmp if H<2H, in DCA

Water levels and depth-averaged velocities every tenth of a tidal cycle in the
downstream third of the domain are presented in Figures 4a-j for model runs using the
three flooding and drying algorithms. The higher forcing and steeper slope increase the
vertical excursion of the land-water boundary to about 1.5m while limiting the horizontal
excursion to approximately that of the previous test case. As in the previous case, all
three algorithms give very similar water level predictions throughout the domain. (Note,
for the EWA, only the water level for the downstream element attached to each node has
been plotted.) The largest differences again occur in the velocity solutions near the front.
The EWA solution is more damped at maximum ebb and near high and low slack than the
other solutions, (Figures 4d,a,f, respectively). In general the EWA solution is also much
smoother near the front than the others.

Beyond about 23km, the channel never floods and a steady downslope velocity of
about 0.4 m/s develops for the DCA. This was the minimum amount of leakage we could
enforce for this method since the code became unstable if a higher drag coefficient was
used for the “dry” nodes. To balance this leakage it was necessary to continuously add
water at the upstream end. The total volume of water (per unit width) added during a 6h
tidal cycle was approximately 80m?. There is considerably more difference in the DCA
and NWA velocity solutions in this test case, presumably due to different sources of
numerical noise. In both solutions the “backwash” problem noted previously is clearly
significant.

FLOODING AND DRYING IMPLEMENTATION IN TWO DIMENSIONS
The implementation of the DCA and the NWA in ADCIRC are essentially the

same as in 1D. However, the implementation of the EWA is more difficult in ADCIRC
than in 1D due to the need to cortectly identify emerging, submerging and otherwise

changing land-water boundaries in order to apply a normal flux boundary condition. = T

While this can be done, it will require considerably more effort than the other two
algorithms given the present structure of the code and the need to maintain vectorization.
Also, as noted previously, the NWA and EWA algorithms will require more computational

effort to implement (due to the need to modify the GWCE system matrix) if a nonlumpedg rz_

implicit model formulation is used together with the direct matrix solver. We also
anticipate that the EWA may be noisier in 2D than it is in 1D. In 2D an element must wait
to wet until the minimum depth at the highest node is surpassed by the water depths at
both of the other nodes that make up the element. Since the required water level may not
be reached simultaneously at both of the nodes, the water level discontinuity will be
different at both nodes when the element wets.

£ vsed.



SUMMARY AND CONCLUSIONS

Based on information available in the literature, we believe a fixed computational
grid flooding and drying scheme would be most practical for short term implementation in
the operational hydrodynamic model ADCIRC. Three fixed grid schemes have been
implemented and tested to date in a 1D (vertically and laterally averaged, constant width)
analogue of ADCIRC.

The drag coefficient approach (DCA) is by far the easiest to implement in 1D and
2D and imposes no direct penalties on the GWCE solution. The nodal wetting approach
(NWA) is slightly more complicated to implement and requires the GWCE system matrix
to be modified each time a node wets or dries. This carries with it a computational penalt
when a direct mattix solver and an implicit, nonlumped GWCE formulation is used. ~The
elemental wetting approach (EWA) is the most complicated to implement (due to the need
to keep track of emerging, submerging and otherwise changing boundaries) and also
requires the GWCE system matrix to be modified each time an element wets or dries.

The only analytical solution for a 1D flooding and drying problem that we are
aware of is for the case of a frictionless channel with linearly sloping beach. Neither the
DCA or EWA could handle this problem. However, the NWA gave encouraging
elevation and reasonable, albeit noisy, velocity solutions. Further comparisons between
the numerical algorithms on sloping beaches with friction showed that all three gave very
similar water level responses. The EWA velomty olg‘ltlon was generally more damped and
smoother than the other solutions. The DCA Bibited J6 significant leakage velocities,
although the accompanying mass flux was Ieiatlvely small. Both the NWA and the DCA
suffered from “backwash”, particularly on the steeper beach. This is a likely contributor to
the noise that characterized these solutions in the vicinity of the front.

As a complement to the flooding and drying algorithms, we have developed an
empirical relationship that increase the drag coefficient as the water depth decreases in
shallow water and holds the drag coefficient constant in deep water. The equation
parameters can be conveniently set to obtain a Manning type friction behavior in shallow
water. We anticipate using this relationship in ADCIRC in combination with a flooding
and drying algorithm.

Based on its ease of implementation and the general agreement it gave in
comparison with the other algorithms in the 1D test cases, we plan to initially implement
the DCA flooding and drying scheme in ADCIRC. However, the seemingly superior
performance of the EWA in our 1D test problems suggests that it might be desirable to
implement this technique in ADCIRC at some point in the future.

Finally, we note that the following flooding and drying scheme that essentially
combines the deforming and fixed grid approaches may merit consideration at some point
in the future. In this “hybrid” scheme, a fixed grid would initially be laid out which
contained wet and dry elements. Boundary elements (or perhaps several layers of
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elements near the boundary) would be allowed to deform until an element adjacent to the
boundary, (as laid out on the original fixed grid), was wholly engulfed. At that time the
grid would be adjusted to include or exclude (depending on whether the water level was
1ising or falling) the engulfed element and the calculations continued. Using this approach
water levels could be tracked in a more continuous manner than possible using a purely
fixed grid approach, but at the same time near boundary element deformation would be
limited and it would only be necessary to track the motion of nodes in a small fraction of
the computational grid.
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Figure 1. Comparison Between Manning Eqn. and Egn. (1)
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Figure 2a. Frictionless Test Case, Time = 0*T/10
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Figure 2b Frictionless Test Case, Time = 1*T/10
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Figure 2¢ Frictionless Test Case, Time = 2*T/10
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Figure 2d. Frictionless Test Case, Time = 3*T/10
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Figure 2e. Frictionless Test Case, Time = 4*T/10
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Figure 2f Frictionless Test Case, Time = 5*T/10
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Figure 2g Frictionless Test Case, Time = 6*T/10
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Figure 2h. Frictionless Test Case, Time = 7*T/10
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Figure 2i. Frictionless Test Case, Time = 8*T/10
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Figure 2j. Frictionless Test Case, Time = 9*T/10
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Figure 3a. Frictional Test Case #1, Time = 0*T/10
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Figure 3b. Frictional Test Case #1, Time = 1*T/10

1 ! ! ' ! ! &g-&&&&?
m&
—_ &Eﬁﬁﬁ&ﬁ&ﬂﬁ&%ﬁﬁ&&ﬁ%ﬁ%@%&§%$ﬁ$§&§$é§@w
é O- : : . /‘__/ ]
2 : E - -7 :
k0] : : -7 + CDA sojution
S : -7 : o NWA salution
g-ir S - X EWA solution
w7 : —- channel bottom
) - ” | 1 I 1 |
12 14 16 18 20 22 24
distance (km)
05 I I ] I I
: : QQQQQQQQQQ
ﬁﬁﬁ&&ﬁﬁﬁﬁgﬁﬁ&ﬁﬁﬁ?ﬁﬁﬁﬁﬁ f‘xﬂ :
Or R : : : @xxx&ﬁ@@&&x&&a
E Q+++++++++
05 : ; i i |
12 14 16 18 20 22 24

distance (km)



velocity (m/s)

24

Figure 3¢ Frictional Test Case #1, Time = 2*T/10
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Figure 3d. Frictional Test Case #1, Time = 3*T/10
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Figure 3e Frictional Test Case #1, Time = 4*T/10
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Figure 3f Frictional Test Case #1, Time = 5*T/10
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Figure 3g. Frictional Test Case #1, Time = 6*T/10
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Figure 3h. Frictional Test Case #1, Time = 7*T/10
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Figure 3i Frictional Test Case #1, Time = 8*T/10
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Figure 4a. Frictional Test Case #2, Time = 0*T/10
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Figure 4c. Frictional Test Case #2, Time = 2*T/10
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Figure 4d. Frictional Test Case #2, Time = 3*T/10
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Figure 4f Frictional Test Case #2, Time = 5*T/10
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Figure 4g. Frictional Test Case #2, Time = 6*T/10
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Figure 4h. Frictional Test Case #2, Time = 7*T/10
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Figure 4i. Frictional Test Case #2, Time = 8*T/10
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Figure 4j. Frictional Test Case #2, Time = 9*T/10
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Figure 5a. Berm Test Case, Time = 0¥T/10
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Figure 5d. Berm Test Case, Time = 3*T/10
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Figure 5e Berm Test Case, Time = 4*T/10
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Figure 5f. Berm Test Case, Time = 5*T/10
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Figure 5g. Berm Test Case, Time = 6*T/10
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Figure 5h. Berm Test Case, Time = 7*T/10
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Figure 5i. Berm Test Case, Time = 8*T/10
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Figure 5j. Berm Test Case, Time = 9*T/10
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