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ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts,
and Estuaries; Report 1, Theory and Methodology of ADCIRC-2DDI and

ADCIRC-3DL (TR DRP-92-6)

ISSUE: A unified and systematic methodol-
ogy must be provided to use in the investiga-
tion of the dispersive or nondispersive charac-
teristics of a site proposed for the disposal of
dredged material in open water as well as to
analyze existing disposal sites.

RESEARCH: ADCIRC (Advanced Three-
Dimensional Circulation Model) was devel-
oped as a part of the Dredging Research Pro-
gram (DRP) as a means of generating a
database of harmonic constituents for tidal ele-
vation and current at discrete locations along
the east, west, and Gulf of Mexico coasts and
to utilize tropical and extratropical global
boundary conditions to compute frequency-
indexed storm surge hydrographs along the
US coasts. The database is being developed
to provide site-specific hydrodynamic bound-
ary conditions for use in analyzing the long-
term stability of existing or proposed dredged
material disposal sites.

SUMMARY: The report describes the the-
ory, methodology, and verification of the fi-
nite element numerical model ADCIRC. The
model] was developed to produce long numeri-
cal simulations on the order of a year for very
large computational domains: for example,
the entire east coast of the United States. The
model was designed for high computational
efficiency and was tested extensively for both
hydrodynamic accuracy and numerical stabil-
ity. Results of the tests are included in the
report.

AVAILABILITY OF REPORT: The report
is available through the Interlibrary Loan Ser-
vice from the US Army Engineer Waterways
Experiment Station (WES) Library, telephone
number (601) 634-2355. National Technical
Information Service (NTIS) report numbers
may be requested from WES Librarians.

To purchase a copy of the report, call NTIS at
(703) 487-4780.
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SUMMARY

This report describes the theory, methodology, and verification of the finite
element numerical model ADCIRC, an ADvanced three—dimensional CIRCulation model
developed for the specific purpose of generating long time periods of hydrodynamic
circulation along shelves, coasts, and within estuaries. The intent of the model is to
produce long numerical simulations (on the order of a year) for very large computational
domains (for example the entire east coast of the US). Therefore, the model was
designed for high computational efficiency and was tested extensively for both
hydrodynamic accuracy and numerical stability. The results of these tests are included
in this report.

The ADCIRC model was developed by the Dredging Research Program (a) to
provide a means of generating a database of harmonic constituents for tidal elevation
and current at discrete locations along the east, west, and Gulf of Mexico coasts, and
(b) to utilize tropical and extratropical global boundary conditions to compute frequency
indexed storm surge hydrographs along the US coasts. The database of storm and tidal
surface elevation and current data is being developed to provide site—specific
hydrodynamic boundary conditions for use in analyzing the long-term stability of
existing or proposed dredge material disposal sites.

The overall intent of the DRP work unit is to provide a unified and systematic
methodology for investigating the dispersive or nondispersive characteristics of a disposal
site. These goals can be realized through the use of hydrodynamic, sediment transport,
and bathymetry change models. The ADCIRC model provides the tidal- and storm-—
related hydrodynamic forcings necessary for site-specific site designation.



ADCIRC: AN ADVANCED THREE-DIMENSIONAL CIRCULATION MODEL
FOR SHELVES, COASTS, AND ESTUARIES

THEORY AND METHODOLOGY

PART I. INTRODUCTION

1. Interest in developing a more accurate technique for predicting sea surface
elevation and circulation in coastal areas has been spurred on by concerns relating to
navigation, shoreline flooding, pollutant transport, and sediment transport. A model
for computing the important features of circulation patterns driven by tides, wind,
atmospheric pressure gradients, and ocean currents must be broad in scope and size.
To simplify seaward boundary conditions, yet include important flow details, the model
must encompass large domains while providing a high degree of resolution in high—
gradient regions as well as in nearshore areas. This means that the model should
allow for the simultaneous solution of flow in continental shelf regions, coastal areas,
and in estuarine systems. The model should solve the three-dimensional conservation
equations [thereby resolving the vertical profile of horizontal velocity] instead of the
widely used depth-integrated conservation equations. This is necessary since it is
impossible to assume a relationship between bottom stress and depth-—averaged velocity
that is generally valid for stratified flows, Ekman layers, and wind—driven circulation
in enclosed or semi-enclosed basins or in cases where wave orbital velocities or
suspended sediment concentration gradients are significant near the bottom.
Furthermore, it is impossible to assume values for momentum dispersion coefficients,
which are inherent in depth-integrated solutions, that are generally valid in complex
flows. ,

2. The requirements of very large domains, a high degree of horizontal
resolution in portions of the domain, and the resolution of rapidly varying vertical
profiles of horizontal velocity place strenuous demands on even the largest
supercomputers. The goal in the development of ADCIRC (ADvanced three-
dimensional CIRCulation model) has been to bring together algorithms that are highly
flexible, accurate, and extremely efficient. These issues are closely interrelated and
have been emphasized in the selection of discretization techniques. The algorithms
that comprise ADCIRC allow for an effective minimization in the required number of



degrees of freedom for a desired level of accuracy, show good stability characteristics,
generate no spurious artificial modes, have minimal inherent artificial numerical
damping, efficiently separate the partial differential equations into small systems of
algebraic equations with time-independent matrices, and are capable of running months
to years of simulation while providing detailed intra—tidal computations.

3. The framework within which ADCIRC has been developed is a coupled
external mode — internal mode approach. This technique has proven to be successful
in past three—dimensional models and can significantly reduce the cost of three—
dimensional hydrostatic circulation computations. The governing equations and the
basic concept behind mode splitting are discussed in detail in Part II. The external
mode solution, which uses the well-known depth-integrated or shallow-water equations,
is discussed in Part III. Key features of the external mode solution include the use of
a generalized wave—continuity equation (GWCE) formulation and numerical
discretizations using the finite element (FE) method in space and the finite difference
(FD) method in time. Results are presented using the external mode solution as a
stand—alone, two—dimensional model on a quarter annular test case and the North
Sea/English Channel system. Part IV focuses on the internal mode solution. During
the development of ADCIRC, a novel technique was discovered that replaces velocity
with shear stress as the dependent variable in the internal mode equations. The
resulting direct stress solution [DSS] allows physically realistic boundary layers to be
included explicitly in a three—dimensional model. This formulation of the internal
mode equations should be invaluable for modeling coastal and shelf circulation, in
which the bottom and surface boundary layers comprise a significant portion of the
water column, and for modeling processes that are critically dependent on boundary
layer physics such as wave—current interaction, sediment transport, oil spill movement,
ice floe movement, energy dissipation, physical-biological couplings, etc. Thorough
descriptions of the DSS formulation and testing are presented in Part IV.

4. ADCIRC is being developed and implemented as a multi-level hierarchy of
models. A 2DDI (two—dimensional, depth-integrated) option solves only the depth—
integrated, external mode equations using parametric relationships for bottom friction
and momentum dispersion.. A 3DL (three-dimensional, local) option uses horizontally
decoupled internal mode equations to solve for the vertical profile of horizontal
velocity and to evaluate bottom friction and momentum dispersion terms for the
depth—integrated external mode solution. A 3DLB (three~dimensional, local,
baroclinic) option includes baroclinic terms as a diagnostic feature. Finally, the 3D
and 3DB options solve the complete internal mode equations for nonstratified and



stratified flows, respectively. At present ADCIRC—2DDI is fully implemented and
operational, ADCIRC-3DL is being tested, and other ADCIRC versions are under
development.

5. ADCIRC achieves a high level of simultaneous regional/local modeling,
accuracy, and efficiency. This performance is a consequence of the extreme grid
flexibility, the optimized governing equation formulations, and the numerical algorithms
used in ADCIRC. Together, these allow ADCIRC to run with order of magnitude
reductions in the number of degrees of freedom and the computational costs of many
presently existing circulation models.

10



PART II: GOVERNING EQUATIONS

Three-dimensional Equations for Nearly Horizontal Flow in Cartesian Coordinates

6. A survey of several recent review volumes (e.g., Heaps 1987; Nihoul and
Jamart 1987; ASCE 1988a,b; Davies 1989) indicates that the turbulent incompressible
Reynolds equations simplified using the Boussinesq approximation and the hydrostatic
pressure approximation generally form the basis for state—of—the—art numerical models
of coastal/shelf circulation. Although these equations describe fluid motion in three
dimensions, because of the simplification of the vertical momentum equations, they are
only correct for nearly horizontal flow (Koutitas 1987; Abbot 1990). Using a
right-handed Cartesian coordinate system these equations can be written as

byt M
R L 1
55 + “'asc‘ + vz,y + w-a— + fu = - W[R 1‘] + po[gT’“’ + g;w + gTZV] (3)
2 @
where

f = 2Qsing = Coriolis parameter
g = acceleration of gravity
r

v = molecular viscosity

tide generating potential

p(x,y,z,t) = time-averaged pressure

p(x,y,2,t) = density of water

po = reference density of water

t = time

T = integration time scale for separating turbulent and time-averaged quantities

T
Tex(X,Y,2,8) = v gu}—{ - % J u’u’ dt - combined viscous and turbulent Reynolds stress
0

T
Tyx(x,y,z,t) =v _gv}_( - % J u’v’ dt - combined viscous and turbulent Reynolds stress

0
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T

T(X¥:2,t) = v -g% - % u’w’ dt — combined viscous and turbulent Reynolds stress
"0
w1 (" : :
Txy(x,y,z,t) =V T v/u’ dt — combined viscous and turbulent Reynolds stress
“0
o 1 (T : .
Tyy(X,y,Z,t) SVE T v’v’ dt — combined viscous and turbulent Reynolds stress
20
ow 1 (%, , : :
Tay(XoY,2,t) = Vv Jy TV dt — combined viscous and turbulent Reynolds stress

0
¢ = degrees latitude
u(x,y,2,t), v(x,y,%t), w(x,y,2,t) = time-averaged velocities in the x, y and z directions

w (%,5,5,t), v/ (X,¥,2,t), W/ (x,y,2,t) = departures of the instantaneous turbulent
: velocities from the time-averaged velocities

X, y = horizontal coordinate directions
z = vertical coordinate direction
Q = angular speed of the Earth (7.29212x107° rad/s)

7. Using the vertical momentum equation, pressure can be eliminated as a
dependent variable from Equations 2 and 3, to give:

du dJu du ou 4 d T
ov v ov ov d d [Tz
-Bf+u-5§+v—3y+w-5-z-+fu:—6}7[%+gc—F]+-52(%X)—~by+my (6)
where "
_ g8 0 N P
by = o B J' (p—po) dz - baroclinic x — forcing
Z
g o ¢ . .
by = T J (p—po) dz - baroclinic y — forcing
y .

my = 1—[3;—"‘1 + o1 ] — horizontal momentum diffusion

ps(x,y,t) — atmospheric pressure at the free surface

8. The solution of Equations 1, 5, and 6 requires the following boundary
conditions:

12
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e

At the free surface,

W=§%+U%+V% (7)

Tex = Tsx, Tzy = Tsy (8)

where Tox(x,y,t) and 7gy(x,y,t) are wind stresses applied at the water
surface.

At the bottom,

w=—[g%+u—§%+vghy] (9)
 Tax/Po = Thx/po = Kub, Toy/po = Toy/po = kvp (10a)
or

u=0,v=0 @ z=-h+ z (10Db)

where Tpy(x,y,t) and 7py(x,y,t) are bottom stresses, up(x,y,t) and
vb(x,y,t) are near bottom velocities, k is a slip coefficient and z, is
the effective bottom roughness height (e.g., z, = ks/30 where kg is the
physical bottom roughness). The physically correct no—slip condition,
Equation 10b, is often replaced by the slip condition, Equation 10a, to
avoid the need to numerically resolve the sharp vertical gradients of u
and v that exist near the bottom. A quadratic slip condition is
obtained by setting

k = Cq (ug+ vg)¥? (11)

If the velocity profile is logarithmic between the elevation where up

and vy are computed, (~h+zp), and the bottom, (-h+z,), Cq can be
defined rigorously as

Ca = {3 Inl(z-h)/(s0-h)]} 2 (12)
where « is the von Karman constant. Often the quadratic slip

condition is replaced by a linear slip condition by setting k equal to a
constant.

At land boundaries normal flux is specified. Typically, this is zero for
a solid boundary or nonzero for a river boundary.

At open boundaries (either along the ocean or at rivers) the free
surface elevation, ((x,y,t), is specified, a radiation boundary condition
is used to allow waves to enter and propagate out of the domain
(Davies and Furnes 1980; Reid 1990), or the discharge is specified.

Three—dimensional Equations for Nearly Horizontal Flow in o Coordinates

It is often useful to transform Equations 1, 5 and 6 into a bottom and
surface~following "¢" coordinate system. By this means, numerical solutions of the
transformed equations maintain the same vertical resolution at each horizontal grid
point, regardless of variations in depth (Davies 1985; Blumberg and Mellor 1987). In
a general g—coordinate system (where o = a at the free surface and ¢ = b at the

13



bottom):

X, = X (13a)
Vo £ (13b)
oza+ 2DZ (13c)
ty = t | (134d)
where

H(x,y,t) = ¢ + h - total water depth to the free surface
h(x,y) — bathymetric depth relative to the geoid

(The o subscript is used to denote variables in the new coordinate system.)

10. Derivatives are converted to the s—coordinate system using the chain rule:

bbbl b (B Y 2] 4 "
Y = [
%= ab) g (14c)

g _ 0 Jo 0 _ oc-a) OH | @
* =&t ot 50 - LH"l [a%j {_B}a— 'a‘t‘(,] ¥ (14d)
11. The velocity component aligned in the o direction is defined as

et e e 0 2
ErEgEll W

12. The baroclinic forcings by,, by,, and the horizontal momentum diffusion

My,, My, in the o coordinate system become:

aﬁ —O(Eq;)‘{ [ J(P“Po) da] + (0-a) 9 (p—po)} (16a)
-t X o E {%d [Hf(rpo) do] + (o-2) %Hy—owo)} (16)
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Jo
0 o-a) 0H | 074
e EI B am
13. Substituting Equations 13 — 17 into Equations 1, and 4 - 6, and
rearranging terms gives the three-dimensional governing equations in the o—coordinate

system. Dropping the o subscripts for notational convenience, the transformed
equations are

H
?jﬁ+dx+é,y + Sl _ (18)
g-‘l+u‘gg+ 5—+ g——fv=—§—[95-+g(—l‘]

+ QHQ 5—(7“ bx + my (19)

%+u§v§+vgvy+w%+fu:—%[%+g§-F]
—b) 4 ;7.

% = - &%) (21)

14. The o equations use the same boundary conditions as the original
equations with the exception that w,= 0 at the free surface and at the bottom.

Vertically Integrated, Two—dimensional Equations for Nearly Horizontal Flow

15. The three-dimensional equations can be integrated over the vertical to
yield a set of two—dimensional equations for free surface displacement and
depth—averaged velocity. In conservative form these equations are:

% 4 U ‘WH =0 (22)

GUH , 9UUH , SUVH 0
gt t ox t oy “NH“‘HEEBTS,““g(C‘“”)]

15



M B Tsx _ Thx
+ Mx + Dx + Bx + 2% - 20 (23)

gVH | OVUH , 9VVH __gd
gt T Tox T oy +fUH——H3;[I;—§+g(C—an)}

Tsy _ Tby
+ My + Dy + By + % - 2 (24)

where
a = effecé;ive Earth elasticity factor (a = 0.69)
Bx = - J by dz - depth-integrated baroclinic forcing

-h

¢

By = - J by dz - depth-integrated baroclinic forcing

-h
Dy = - -g%m - glyz“" — momentum dispersion
Dy = - -g%“’ - -?T?—VV — momentum dispersion

¢ ¢ ¢
Dy, = j 4t dz,  Dyy = J 46 dz,  Dyy = J o0 dz

-h -h -h

n(x,y,t) — Newtonian equilibrium tide potential

¢ ¢
My = 0_["Txx dz + 0_[Tyx dz - depth-integrated, horizontal momentum diffusion
x| po Yﬁ-h Po ,

S ¢

My = 0 J Ty gz + 0 J vy gg - depth-integrated, horizontal momentum diffusion
53_(_ Po W—h Po
1 ¢ |
U(x,y,t) = HJ u dz — depth-averaged horizontal velocity
-h
1 G
Vixyt) = g J v dz - depth-averaged horizontal velocity
-h

(x,y,z,t) = u — U - departure of horizontal velocity from depth-averaged velocity
9(x,y,2,t) = v = V - departure of horizontal velocity from depth-averaged velocity

16. In non—conservative form, the vertically integrated momentum conservation

equations are:

%+U%E+V%—N=—%[Pﬁ+g((—an)]

+ fi|Mx + Do + By + Iox — Zha] (25)
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ov ov ov __ 0
ot T Ugx T Voy T TU -‘ay[gﬁJfg(C“a")]
1 vy _ Tby

17. The derivation of the Newtonian equilibrium tide potential, %, is presented
by Reid (1990). A practical expression for 7 given by Reid is

7(A6t) = ) Cin finto) Li(4) cos[2n(t—0)/Tin + jA + Falto)] (27)
n,j

where

Cjn = constant characterizing the amplitude of constituent n of species j (Table 1)

fin(t) = time—dependent nodal factor

J =0, 1, 2 — tidal species (j=0 declinational, j=1 diurnal, j=2 semidiurnal)

Lo = 3 sin(¢) — 1

L, = sin(2¢)

Ly = cos?(¢)

A, ¢ = degrees of longitude and latitude, respectively
to = reference time

Tjn = constant characterizing the period of constituent n of species j (Table 1)
#u(t) — time—dependent astronomical argument

Values for fjn and %n can be computed from tables (e.g., Schureman 1941) or using
available harmonic analysis packages (e.g., Foreman 1977).

18. The gradient of an results in the effective tide-producing force. The
factor & accounts for the reduction in the field of gravity due to the existence of
small tidal deformations of the Earth’s surface called Earth tides. The value
o = 0.69 is the ratio of the theoretical period of the Earth’s wobble derived by Euler
(assuming the Earth to be a perfectly rigid sphere) to the observed period of the
Earth’s wobble (Reid 1990). (Therefore @ is a global measure of the rigidity of the
Earth. For reference, @ = 1 would correspond to a perfectly rigid sphere.) a = 0.69
has been used for modeling global ocean tides by investigators including Schwiderski
(1980) and Hendershott (1981).

, 19. Due to their computational efficiency, models based on the vertically
integrated equations have been widely used for modeling coastal, shelf, and even open
ocean circulation (e.g., Leendertse 1967; Wang and Connor 1975; Spaulding 1984;
Smith and Cheng 1987; Werner and Lynch 1987; Walters 1987; Vincent and Le
Provost 1988; Westerink, Stolzenbach, and Connor 1989; Signell 1989). All of the
physics contained in the original three-dimensional governing equations are embedded
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Table 1
Constants for the Principal Tidal Constituents (from Reid 1990)

C v T
Species Constituent m solar days or hrs*
0 M; fortnightly lunar 0.041742 13.660791d
M, monthly lunar 0.022026 27.554553d
Ssa semiannual solar 0.019446 182.6211d
S, annual solar ** 365.2597d
1 K; luni-solar 0.141565 23.9344696h
O, principal lunar 0.100514 25.8193417h
P, principal solar 0.046843 24.0658902h
Q; elliptical lunar 0.019256 - 26.8683566h
2 M, principal lunar 0.242334 12.4206012h
S, principal solar 0.112841 12.0000000h
N, elliptical lunar 0.046398 12.6583482h
K, luni-solar 0.030704 11.9672348h

*One lunar day = 1.035050 solar days or 24.8412 solar hours
**The annual solar tide is heavily dependent on seasonal heating and cooling of the
ocean, as well as radiation pressure.
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in the vertically integrated equations if the bottom stress and the momentum
dispersion terms are specified correctly. Although more sophisticated approaches have
been developed for specialized conditions (Lynch and Officer 1985; Nihoul and Djenidi
1987; Tee 1987; Poon 1988; Jenter and Madsen 1989), bottom stress is usually
parameterized as a collinear function of the depth-averaged velocity, and momentum
dispersion is either neglected or represented as a "diffusion—like" function of the
depth-averaged velocity (Bedford 1984).

20. Parameterized bottom stress relationships are typically quadratic in the
depth—averaged velocity and of the form

-;gbz = Cf (U2 + V5)V2 U (28a)
o]
%‘gx = C; (U2 4+ Vo)L2 vy (28Db)
0
where Cy is computed using one of the following relationships:
f
Or = 2 (293)
Ct = _503 (29b)
Cr = M8 (29¢)
hl/s

In Equation 29, wa is the Darcy-Weisbach friction factor, C is the Chezy friction

coefficient, and n is the Manning friction factor.

21. The depth-integrated lateral momentum diffusion terms are typically
lumped together with the momentum dispersion terms into a standard isotropic and
homogeneous eddy diffusion/dispersion model (Blumberg and Mellor 1987)

_ pMp [ 0%UH | 0°UH |, 4%°VH
_ oMp [§2VH |, 9?°VH = 9°UH

where Ei‘lﬂz is a horizontal eddy diffusion/dispersion coefficient. Equation 30 is based

directly on a molecular diffusion analogy as applied to depth-integrated flow. Kolar
and Gray (1990) use a slightly simpler model that approximates Equation 30 as:

0’UH _ §°UH
ax? T ~oy?

My + Dx = B} | (312)
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(31b)

2 2
My + Dy = Egg [8 VH 0 VH]

ox ? + oy *
where Egg is an eddy diffusion/dispersion coefficient that will generally not be equal
to Eg?

22. For flows with horizontal length scales that are large compared to the
depth, My and My are negligible in the momentum balance in Equations 25 and 26
(Blumberg and Mellor 1987). Dy and Dy are similarly small when the velocity profile
is nearly uniform over the vertical. In such flows E}ﬁ or Ehﬁg are either set to zero
or kept at a relatively small value to provide stability to the numerical scheme. (The
latter must be done with considerable caution to ensure that the contributions of these
terms in the momentum equations remain small. Otherwise, the model solutions will
-be artificially altered.) Conversely, when the velocity profile varies strongly over the
vertical, Dy and Dy may have a significant contribution to the momentum balance.

- 23. For tidal flows in relatively shallow, unstratified waters, depth—integrated
computations that make use of the parameterizations given in Equations 28 — 31
appear to work reasonably well (although detailed studies of tidal constituent dynamics
indicate that all of the flow physics are not captured in two-dimensional simulations
due to the form of the bottom friction term (Westerink, Stolzenbach, and
Connor 1989)). However, in wind—-driven flows, stratified flows, Ekman layers, or
when wave orbital velocities or suspended sediment gradients are significant near the
bottom, the simple parameterizations for bottom friction and momentum dispersion
given -above become entirely inadequate. Also, since the depth—averaged velocity may
be very different from the actual velocity at a specific elevation in the water column
(particularly if flow reversal occurs over the depth), the use of the depth-averaged
velocity in a transport model (e.g., for sediment transport) may cause considerable
error in predicted transport patterns. Therefore, for many applications of practical
interest, a model based solely on the vertically integrated governing equations is not
adequate.

Mode Splitting

24. Unfortunately, numerical solutions of the three—dimensional governing
equations require substantially increased computer time and storage in comparison to
solutions of the vertically integrated equations. To help minimize this cost, most
three—~dimensional models use some type of mode—splitting scheme. Mode splitting is
accomplished by solving the two—dimensional, vertically integrated, "external mode"
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equations for the free surface displacement (and sometimes the depth~averaged
velocity). The external mode solutions are then used to force "internal mode"
equations that account for the vertical propagation of momentum. The internal mode
equations are solved for the vertical profile of velocity and the results used to
compute Tpx, Tby, Dx, and Dy for subsequent external mode calculations. Internal
mode equations have been generated by integrating the three—dimensional equations
over discrete layers in the vertical and then subtracting the equations for adjacent
layers (Simmons 1974; Sheng and Lick 1980), by subtracting the external mode
equations from the three—-dimensional equations (Wang 1982; Sheng 1983; Davies 1985),
by differentiating the three-dimensional equations in the vertical direction (Tee 1979),
or by using the three-dimensional equations themselves (Blumberg and Mellor 1987;
Lynch and Werner 1991). (The internal mode equations and their solution are
discussed in detail in Part IV of this report.) Mode splitting allows the free surface
elevation to be evaluated with the computational efficiency of a vertically integrated
model. This can be quite important since the allowable time step for this
computation is often severely constrained by accuracy requirements or a Courant
stability criterion. Since the internal mode calculations are free from surface gravity
waves, the vertical profile of velocity can often be computed using a significantly
larger time step than the free surface elevation.

25. In effect, mode splitting replaces the parameterizations of bottom stress
and momentum dispersion used in a purely two—dimensional model with values
computed from the vertical profiles of velocity generated by the internal mode
equations. Therefore, the vertically integrated, external mode computations do not
require parameterizations of either bottom stress or momentum dispersion in terms of
the depth-averaged velocity. The only parameterizations maintained in the external
mode equations are for the horizontal momentum diffusion terms. These terms are
usually insignificant in the momentum balance, although for small-scale computations
horizontal momentum diffusion can be a physically important process. Most often the
horizontal momentum diffusion terms are retained only to provide numerical stability
and are parameterized with expressions identical to Equations 30 and 31, ie.,

M d*UH 0*UH 9’°VH

My = En; [2 oxz T Ty ? + BxBy] .(323)
M [92°VH 8*VH d’UH

or alternatively,
M [42UH , §*UH

Mx = En2 [ Jx 2 + Jy {] (33&)

21



9:VH 62VH]

M
My = Eh2 [ ax2 + ay ] (33b)

where E}él and Eh& are eddy coefficients for horizontal momentum diffusion.

Vertical Turbulent Closure

26. The internal mode equations require the parameterization of the vertical
turbulent momentum transport terms, 7,x and 74y, (also called the vertical shear
stresses). These terms can dominate the momentum balance in portions of the
domain and it is therefore critical to find an adequate closure scheme. Turbulent
closure has been and continues to be the subject of considerable research. Recent
summaries of this work include Mellor and Yamada (1982); Rodi (1984, 1987);
Ferziger (1987); Johns and Oguz (1987); and ASCE (1988a,b). The most general
approach is to solve transport equations for the turbulent velocity correlations that
make up the turbulent stresses (stress/flux models). However, this adds considerably
to the computational burden of a three—dimensional model. Models based on this
technique have had little testing and virtually no application to geophysical flows
(ASCE 1988b). Also, it appears that these models offer no decisive advantage in
shear flows (Launder 1984). Alternatively, the vertical shear stresses can be
parameterized in terms of the mean velocity field using eddy viscosity relationships of

the form

Tax _ ou

Toy _ ov

TOT?L = Ey T (34b)

On dimensional grounds the vertical eddy viscosity Ey should be proportional to a
velocity scale v multiplied by a length scale I, both of which are characteristic of the
turbulent motion. Particularly simple expressions such as the Prandtl mixing length
model can be found for v and [ for boundary-layer type flows (Rodi 1987). In more
complex flows, v has been related to the square root of the total turbulent kinetic
energy, k. The terms k and [ (or some combination of k¥ and [ such as e~k3/2/]) can
be solved for using quasi-empirical transport equations or specified using empirical
algebraic expressions. The primary limitations to the eddy viscosity approach are its
inability to simulate counter gradient transport or to account for nonisotropic
turbulence. A third choice for expressing the turbulent stresses lies between the
stress/flux models and the eddy viscosity models in complexity and potential for
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representing complex flows. In this approach algebraic expressions (approximations to
the transport equations used in stress/flux models) relate the vertical stresses to % and
! (or €) without the use of an eddy viscosity hypothesis.

27. Eddy viscosity models are by far the most widely used method for
representing vertical momentum transport in coastal flows. These models can be
expected to work reasonably well in such applications, since the water column is
typically dominated by the bottom and surface boundary layers.
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PART III: EXTERNAL MODE SOLUTION
Selection Considerations for the External Mode Solution

28. A basic objective in the development of ADCIRC is to provide the ability
to perform computations on very large domains. This requires selecting algorithms
that satisfy interrelated requirements of a high level of grid flexibility, accuracy, and
efficiency. To ensure a high degree of solution accuracy, the discretization scheme
must have numerical amplitude and phase propagation characteristics that are nearly
identical to the analytical characteristics even for relatively poorly resolved
wavelengths (e.g., good correspondence down to at least A/Ax = 20, where A is the
wavelength and Ax the grid spacing). Furthermore, solution accuracy requires that all
wavelengths with significant energy, (e.g., as generated in regions of rapidly varying
flow, geometry, and/or topography), be well-resolved. A high degree of solution
efficiency requires that the algorithm minimizes both the number of degrees of freedom
and the operations required per degree of freedom per time step. Minimization of the
number of degrees of freedom is constrained by the need to provide resolution on a
localized basis and is highly dependent on the accuracy and the grid flexibility of the
numerical scheme.

29. Because grid flexibility is pivotal to solution accuracy and efficiency,
various strategies have been devised to allow variations in grid size over a model
domain. A nested grid approach offers one solution. However, unless the grids are
coupled, this approaéh cannot properly account for flow interactions between the
various grids. Stretched FD grids offer the possibility of providing local refinement
within a single grid. However, cell aspect ratio requirements limit the degree of grid
size variability. Furthermore, since cell size in the x direction is fixed for all y
locations for a given x and vice versa, portions of the domain are often over-refined.
Boundary-fitted FD schemes that utilize conformal mapping techniques allow the land
boundaries to be well-represented in addition to offering local refinement possibilities.
However, these techniques suffer from the same shortcomings as stretched FD
approximations and often significant difficulties are encountered in finding a suitable
transformation function for complex geographic regions. The FE algorithms based on
triangular elements are highly flexible and can provide local refinement in a systematic
and optimal fashion. In fact, circulation computations for tides and storm surge in
the Gulf of Mexico (Westerink et al., in press) have been achieved with cell area
ratios greater than 1 to 15,000.
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30. Algorithm accuracy per degree of freedom is another critical issue in the
selection of an external mode solution algorithm. FD schemes were successful fairly
early in their development owing to the use of the staggered or C grid approach
(Hansen 1956; Leendertse 1967). Early FE schemes were plagued with severe spurious
modes that required the heavy-handed addition of non—physical dissipation and
resulted in very poor accuracy characteristics (Gray 1982). It was not until the
introduction of the wave-continuity equation (WCE) formulation that robust and
highly accurate FE schemes emerged (Lynch and Gray 1979). The WCE formulation
is based on the rearrangement of the continuum equations prior to any spatial
discretization. Extensive numerical testing has demonstrated that FE-based WCE
solutions produce very accurate results (Lynch and Gray 1979; Lynch 1981; Walters
and Carey 1983; Walters 1983 and 1984). It has also been shown that the
fundamental success of the WCE FE scheme lies in its ability to propagate 2Ax
waves (Platzman 1981; Foreman 1983). (This is also the reason why the C grid FD
solutions are successful.)

31. Finally, overall algorithm efficiency is essential in the selection of an
external mode solution. In general, implicit methods are more useful in long wave
computations than explicit methods, particularly when small cells or elements are used.
However, the use of implicit methods typically results in time—dependent matrices that
must be reassembled and re—solved at every time step. This increases the
computational burden significantly. The FD methods overcome this problem by
implementing an alternating direction implicit (ADI) type approach that reduces a
two—dimensional problem to a sequence of one—dimensional problems, resulting in
significant computational savings for large problems. It is not possible to apply the
ADI approach to FE-based methods. However, a WCE FE-based solution has been
formulated that decouples the solutions for elevation and velocity and allows the use
of time-independent matrices for the elevation solution and diagonal matrices for the
velocity solution. These features have produced a highly efficient WCE FE solution
called the generalized wave-continuity equation (GWCE) formulation (Kinmark 1985).

32. Careful consideration of the requirements for grid flexibility and a high
level of accuracy and efficiency led to the selection of the FE-based GWCE
formulation for the external mode solution in ADCIRC. Extensive analysis, testing,
and field applications of the GWCE during the past decade have demonstrated the
unparalleled capabilities and robustness of the scheme.
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Development of the Generalized Wave—Continuity Equation

33. The GWCE formulation is a specifically designed WCE formulation that
yields a discrete system of equations with time-independent matrices. Time—
independent system matrices are critical in minimizing the computational cost for
finite-element—based solutions due to the expense of both the matrix assembly and
decomposition steps. The GWCE is based on the primitive depth—integrated |
continuity equation, Equation 22, and the primitive depth—integrated conservation of
momentum equations in conservative form, Equations 23 and 24. The primitive
continuity equation is differentiated with respect to time to yield:

#¢ . 8°UH . 6°VH
G+ e xIy = =0 (35)

The primitive momentum equations are differentiated with respect to x and y,
respectively, and rearranged as:

2 H AUVH 9
PUH _ 5 SUUH _ gy + IVH - H g B2+ g(¢ — an)]
Tsx _ Tobx
+ My + Dy + By + D% - 2bx} (36)
32VH dUVH _ §VVH 9
0 (- UVH _ gy~ [UH - H 5 (B2 + g(¢ - an)]
+My+Dy+By+T—px —XTB} (37)

Equations 36 and 37 are then substituted into Equation 35:

2 H
G+ - Tt - TR VE - H o (B 4 (¢ - an)] + Mo

Jy
‘ Tsx Tbx __6UVH_5VVH_
+ Dx + Bx + }+7‘w_{ 3y fUH
—H"{Eﬁ+g<<—an>1+M+D + By +Tsx-Tn_ g (38)
dy ‘po y y Po Po

Finally, the primitive continuity equation is multiplied by a constant, 7,, and added
to Equation 38:

2
%+To%ﬂL%{‘agEH"BUVH+fVH-H§;[P—S+g(<—an)]+Mx+Dx

gy
Tsx _ 7bx 5UVH _ 6VVH
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_g 9 ps _ Tsy _ Thby _
HW[pO-Fg(C an)] + My + Dy + By + o p0+‘TOVH}—0 (39)

34. The advective terms in Equation 39 are in conservative form. Our
experience indicates that if these terms are put into non—conservative form, improved
numerical stability is obtained when advection is dominant in the global or local force
balance. The advective terms in the GWCE are reformulated by expanding the
derivatives and substituting in the primitive continuity equation, Equation 22.

gzé+rog%+%{U%—UH%-VH%+NH-H%%+g(g_m,)]

T Tb 0 0 av
+MX+DX+BX+—/SJ§_T§+TO”H}+W{VB%_”HBY
av 0 p
- Tsy _ Tby =
+ ry e + 17oVH} = 0 (40)

35. The lateral closure model in ADCIRC is the simplified eddy viscosity
model of Kolar and Gray (1990), Equation 33. Substituting this into Equation 40
gives:

g:é+T°g%+%{U%'UH%"VH%+WH-H%[E§+g(C—an)]

Tsx _ Tbx 0 o¢ _ av _ av _
+Dx+Bx+—§—g-—W+TOUH}+W{Vm{ UH g - VH § - {UH
g9 s - Tsy _ Thy |

H i [p0 + g(¢{ - an)] + Dy + By + e~ et T7oVH}
) 0?UH , 9°UH,, , & 02VH | 9°VH, , _
+ 7 [Ena557 + 3y 7)] + 3y [Eno(Tx7 + @yz) =0 (41)

where E;, is the generalized lateral diffusion/dispersion coefficient. For the 2DDI
option, E;, represents the combined effects of both lateral diffusion and dispersion.
Therefore E,, = EL"; and Dy and Dy are both set to zero. For the three~dimensional
ADCIRC options, E;, represents only lateral diffusion. In these cases, Ep, = Egz,

and Dy and Dy are explicitly computed from the internal mode solution. It is
assumed that E;, is constant in time and space and that it has a value of zero on

the boundaries of the domain.
36. The lateral diffusive/dispersive terms in Equation 41 can be conveniently
rearranged to decrease the functional continuity requirements for the symmetrical weak
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weighted residual formulation from Ct back to CO as is the case for the GWCE
formulation without any lateral closure model (Kolar and Gray 1990). Rearranging
the spatial derivatives of the lateral diffusive/dispersive terms in Equation 41 gives:

9
%+Togé+%{U%—UH%—VH%—I+NH—H§E[%§+g((—an)]

Tsx _ Tbx a ¢ v _ av
+ D+ B+ D2 p§+TOUH}+-ay{V6-§ UH 4y - VH § - fUH
d
—ng—,[ﬂug(c—an)] + Dy + By + I8t — D 4 7,VH}
d? HUH ik BUH OVH
+ Ep,y [a;z (Fx— )] + Epy [‘55;1 (Fx + v = (42)
The primitive continuity equation, Equation 22, can be used to substitute for the
divergence of flux in the lateral diffusion/dispersion terms in Equation 42 to give:
& 9 d i} U au 0 Ps
G+ g+ G (U GE - UH G - VE G + VE - H g (B + g(¢ - an)]
— By 0% + Dy + By + Tsx _ Tox 4 r,UH)
av v 8 ps
+W{VH%—UHK—VHW—fUH—HW[pz+g(§—an)]
ik T Tb
- By, goop + Dy + By + DX - ¥ 4 7VH} = 0 (43)

37. Equation 43 can be solved in conjunction with the primitive conservation
of momentum equations in either conservative or non—conservative form. ADCIRC
uses the non-—conservative momentum equations, Equations 25 and 26. Incorporating
the same simplified eddy viscosity model into the non—conservative momentum
equations gives:

%+Ugg+vgg—fv=—g;[2§+g(<—an)]
O°UH | 0'UH By x x
+HEh2[ T o2 ]+H’ H_+%§H”%H_ (44)

v oV av — _9 s _
G+ Ugg+ Vgy + 10 =g [+ (- on)
1 [0VH aVH1 D, , B

+ & Eny ) +H1+H¥+;1§§f%ﬁ— (45)

28



Bottom Stress Formulation

38. The bottom stress in Equations 43 — 45 is expressed using a drag tensor
similar to that proposed by Jenter and Madsen (1989):

(7] - vl 2l 9] @

where

v
Ce (U2 + v3)”
il

Tx =

(46b)

and 7 is the angle measured counter clockwise from the depth-averaged velocity vector
to the bottom stress vector.

39. Defining
f'z f + 7ysin(y) | (47a)
T4 = TxC08(7) (47b)

and substituting Equations 46 and 47 into Equations 43 — 45 gives the GWCE and
momentum equations in final form:

R%+To-5§+-5)—({U-a§ UH-a— VHgI—I+f'VH—H-gE[%+g((—an)]

~ By £5 + D + By + X 4 (rp-rg)UH)

Po
9 o av v _ Y
+W{VB%_UHH_VHH}7-fUH—HB§[P;—§+g(C—aﬂ)]
’52 /

—Ehzgy—%-*- Dy + By + L;%'*' (To-r4)VH} = 0 (48)

g’%+UgE+V§Q—f'V=—§}—([P§+g(C—an)]

02UH d*UH By x ,

+HEh2[é}x2 ay2‘+H"+H"+’;§TI"’*U (49)

_a_+U.a__+V~5—+f’U W[E+g(c—an)]
2 2
PR R G B B ny oy )

40. In the 2DDI option, the bottom stress and depth-averaged velocity are
assumed to be co-linear (y = 0). Cr is specified directly as an input parameter or
computed using one of the relationships given in Equation 29. In the three—
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dimensional ADCIRC options, 7 and Cr are computed using 7px and 7py from the
internal mode solution. As noted above, 7 is the angle measured counterclockwise
from the depth—averaged velocity vector to the bottom stress vector. Cs is determined

as:

)
(Thx + Tiy) 1)
f —_
po(U? + VI

It is easily shown that Equations 46, 47, and 51 introduce the bottom stresses
computed in the internal mode solution directly into the external mode equations.

Deveiogment of Weighted Residual Statements

41. To develop a Galerkin weighted residual statement for the GWCE, Equation
48 is weighted by the interpolating basis function, ¢i;, and spatially integrated over
the interior domain, (2, giving:

<B’(§ ¢i>q + <7 B'{; $i>q + <6Ax ¢i>q + <'5_I $;i>q = i=1, ..N (52)

where
<ab>q = J}j a b dQ

2 = the global domain
N = number of nodes in the spatial discretization

AxEUS%—UHg%—-VHg%+f’VH—Hg§[g—§+g(C——an)]

2
- Ey, % + Dy + By + % + (7o—74)UH (53a)

Ay V%—UH%—VH%——PUH—H%[%Z+g((——an)]
2

Applying Gauss’s theorem to the integrals in Equation 52 that contain spatial
derivatives gives:

52 P 0 0¢;
<y§, $:>q + <Tojpr $:>a — <Ayp 6%>9 - <4y, ‘o‘?i‘b“

= = [ Ao + Ayeyley di=1, N (54)
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where I' is the boundary of the domain Q. The direction cosines are defined as:

cos(fx) (55a)
cos(dy) (55b)
where fx and 0, are the (spatially varying) angles measured to the outward normal at
any point along the boundary from the positive x and y axes, respectively.

Onx

Gny

42. Using the conservative form of the momentum equations, Equations 23 and
24, recasting the advective terms in Equation 53 into conservative form, and using the
simplified lateral diffusion model, Equation 33, Ax and Ay can be written as:

JUH 0°UH | a UH

A, =08 g, & ) - By, 4 + r,UH (562)
GVH O'VH | a VH

A, =92 5, & ) - E,, Hy—gf + 7,VH (56b)

Substituting Equation 56 into the line integral in Equation 54 and assuming that E,,

is zero on the boundary, Equation 54 becomes:
2
<§t-§, $;i>q + <rog%, ¢$;>q - <U S% - UH g% - VH g% + {VH
d? , 0¢;
- H % [Ip)‘f‘) + 8(¢ — an)] - Ey, 3,(—35 + Dx + By + % + (7o~74)UH, '6%>9
0 ov ov ., 0 92

—<VB%—UH~G,;—VH-5?-fUH-H3§[%:+g((—an)]—EMW%
+ Dy + By + T—;ﬁ + (ro-74)VH, g-;’f—i>n = - IL [%(UHanx + VHayy)

+ To(UHanx + VHony)]¢; dT i=1,..N (57)

43. The terms that involve partial derivatives of the barometric pressure,
surface elevation, and Newtonian equilibrium tidal potential can be written as:

‘g‘u— [ + g(¢ - an)] = gh g,% + 5%24- gH -g; (ﬁf_é - an) (58a)
H%[ﬁ—j+g(<—an)]=ghg§+§g§2+ gH 5 (B2 - an) (58b)

44. The normal flux across the boundary is defined as: -
Qn = UHanx + VHaoyy (59)
45. The line integral in Equation 57 is non-zero only on flux—specified

boundaries, Fq. Using the specified normal flux Qn4 for Qn, and substituting

Equations 58 and 59 into Equation 57 gives the final symmetrical weak weighted
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residual statement for the GWCE:

<§:—§,¢i>9 + <To'g£,¢i>9 + <ghg§(, g?(i>9 + <gh§§, g%bﬂ + Eh2<§§€, g%>9
+ Eh2<g;§f, g%% = <U§5, %f—im + <Vgﬁ, gg-%ﬂ + <Wy, gﬁs—%g

+ <Wy, g%m = {, (g%ﬂ* + ToQns) ¢5 dT° i=1,..N (60)
Q
where
_ ou oU | . a2 )
Wx=—-UH-EE—VH-aS,—+fVH—§-H§——-gH-aE(I—)%§-—an) + Dy + By
+ % + (7o-74)UH (61a)

_ oV v . a¢? 9
Wy=—UH3-f—VHW—fUH-§6§--gHW(;Io’—g—an)+Dy+By

+ DY 4 (ro-r)VH (61b)

46. The weighted residual form of the conservation of momentum equations is
obtained by weighting Equations 49 and 50 by ¢; and integrating over the domain Q:

<g—[tl+U-?%+V—g%—f’v+%[zf+g(g‘—an)]

2UH ., 6?UH, Dy B ,
-LE, G5 +@§}-Hz—f—%ﬁ+r*u,¢i>g=o (62)

<g¥+Ug¥+Vg¥+f’U+_%[%§-+g(C-—an)]

1 0*VH 0*VH D B ,
-1 B2 [32 +ay2]‘Hl“Hl“%§ﬁ+T*V,¢i>Q=0 (63)

Applying Gauss’s theorem to the lateral diffusive/dispersive terms in Equations 62 and
63, and recalling that E;, equals zero on the boundary, gives the symmetrical weak

weighted residual form of the momentum equations:

oU , oUH 0 i JUH 0 i
<HT;-, ¢i>Q - <f V, ¢i>Q + Eh2<3x_’ BJ_((—S—)>Q + Eh2<ay—‘, W(%l)>ﬂ =

- <5 B+ g(¢ - am)] - 25 + iU, di>g
<Py gg-, pi>q + <pE + B ¢ (64)

7 HVH 6 i BVH 6 i
<%Vt—, ¢pi>q + <'U, ¢i>q + Epy<m— 7,}—((rii’r)>Q + Eh2<6‘y“’ 537(%)% =
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- <§§ [%ﬁ + g(¢ — an)] - %ﬁﬁ + 7%V, ¢i>q

ov D B
- <UL+ VoY, g + <P+ BY di> (65)

Time Discretization

47. The GWCE equation is discretized in time using a variably weighted,
three-time-level, implicit scheme for the linear terms (i.e., those terms on the left side
of Equation 60). Wy and Wy are treated explicitly. The time derivatives that
appear on the right side of Equation 60 are evaluated at two known time levels. The
time—discretized GWCE is:

i f\g + Ck'l, biog 4 T0<;k+1 _tgk-l’ bive
+ a [<ghg€m, 9150 + <ghg§k+l, ggf_sﬂ]
+ a [<ghg§k, g%m; + <gh%k, g%>g]
+ a [<gh§§k-l, 90150 + <gh§§k'l, g%%]
* B <G B B+ <) Gy
= <Uk(£k—X—t¢-l), %i>q + <Vk(¢:5“t_§2), ggﬁ>g
+ <Wx g%>9 + <Wy, g‘;,‘h>n - {‘ (%;%ﬁﬁ;l + 700, Qk4!

Q
+ ToazQﬁ* + 'roa3Q}‘,,;1) ¢; dT i

1, ..N (66)

where

At = time step

k+1, k, k-1 = future, present, and past time levels
a;, a, o; = time weighting factors

The time weighting factors are selected so that:

Rearranging Equation 66 gives:
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(1 + T"TOAt) <<k+1, $i>q
k +1 . k+1 .
+ algAt2[<hg§ , g%m + <hg§ , g%%]
Ev oA k +1 Ob; Fl k+1 b, i
+ ——h%—ﬁ [<g§ , g + <5§ » Fy>al
= 2 <%, di>g + (BRE - 1) <, gi>g
. k A4,
- angt2[<h5§ , a%>n + <hg§, g%>9]
k-1 54, k-1 A4,
- a3gAt2[<hg)-€ , %—I>Q + <h% ’ %1>Q]
En2A Akt dg, Ak g
+ ——%——5 [<3§ ) > o + <5§ , 34;,‘5—>Q]

+ At<UK((x - ¢k, s b ArcvE((k - ¢k, %;?59

+ AWy, s 4 avewh, 0 - AR, =1, N (67)
where
k¢l _ k-1 .
Fi= ] B Q0 1 0iQk + ToQls + TomsQE:Y) 5 dT (68)
Q

48. The symmetrical weak weighted residual form of the momentum equations
are discretized in time using a two-time-level implicit Crank-Nicolson approximation
for all terms except the diffusive terms, which are treated with a variably weighted,
two-time-level implicit scheme and the advective, dispersive, and baroclinic terms,
which are treated explicitly:

k+l sk
I g + § <riH(UR 4 U, gi>q - <B0 (V4 VH), gi>g

i U Sy KO 8
P TN T e
= <'5;([P—— + g(¢**! — an**)] - (T—zﬁ)k”, $i>q

-% <G B 4 ¢k - an] - (B 6>

_ <Uk gg_ + Vk ‘9U | bi>g + <HE + Hgg, $i>0 i=1, ..N (69)
vk /k(ykel k k+1 k
<—A— i>q + 5 <TE(VEL + V), gi>q +<—g— (U 4+, $i>q
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+ Ey, [6 <%¥—Hlk+l, %—t(ﬁ%{)% + B <—a-g§(@k, %{(ﬁ—}bﬂ

+ By <Q%@k*,r S GiD>a + 2 <Qg-‘y’—§lk, gD

= - 1 <G g - ann)] - (B, 4>

-1 <G B4 gk - ) - G o

- <Uk %Y" + VX %k, ¢i>q + <H§ + ﬁ% $i>q i=1, ..N (70)

X

where f; and f, are time-weighting factors at the future and present time levels.
These factors are selected so that

P+ fa=1
Rearranging Equations 69 and 70 gives:

<t + &t At Y UK 4> - %—t <fkVEL gi>q

¥ BBt [<AUET 8 b 4 <Qg‘yj—Hlk’,’ o>

= <(1 - At /k) Uk ¢1>Q + %‘t" <f’ka, ¢i>Q

— B,Ep,At [<_}(;IE) '&‘(ﬁ'ﬁ)> + <%§E)k’ %(ﬁ%)%]

%_t <gJ_( [R_+ g(Cku _ anku)] (sz)kn, ¢i>Q

-2t <% [E— + g(¢* - an)] - (G, ¢i>sz

dUk 4 vk aU

k
- oy <vk 80  di>q + At <DE+ BE g i=1, LN (1)

<(1 + AtT,k) Vk+1 ¢i>Q + _2_ <f/kUk+1, ¢ >0

+ BEp,At [<-§)—-P—Ilk 1 %{(ﬁﬁ)% + <—%—H)k* W(ﬁ"‘_’b“

= <(1 - %—Erﬁ‘) VE ¢i>q - T <t'kUk, ¢i>q

- Byt [<OEY, s+ <OVEE 8 (g )
t <§-y- B4 g(¢54 ~ 0] ~ (Tt gi>g
At 3; [E" + g(¢* - an¥)] (ﬁﬁ)k, $i>q
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— At <Uk g;{’_k + Vk %k, Pi>q + At <§% + g%, $i>q i=1, .N (72)

49. There are two differences in the solution of Equations 67, 71, and 72 in
the 2DDI option and the three—dimensional options. In the 2DDI option, the friction
parameter (Cg or one of the parameters in Equation 29) is specified in the model
input. The dispersive terms are included with the lateral diffusive terms by
eliminating Dx and Dy from Equations 67, 71, and 72 and setting Eyy = E‘;ﬁ’,. In the
three—dimensional options, Ct, 7, Dx, and Dy are computed from the most recent
internal mode solution. In flows where the velocity reverses direction over the depth,
it is possible for the depth—averaged velocity to be zero while the bottom stress is
nonzero. In this case the drag coefficient computed in Equation 51 becomes infinite.
To prevent the numerical difficulties that this causes, an upper limit is set on the
computed drag coefficient. If this limit is exceeded, 7 and Cr are set to zero and the
bottom stress computed in the most recent internal mode solution is passed directly to

the external mode equations. In the GWCE, —;—Eﬁ and ;—gl determined in the internal
0 0
mode solution are subtracted from Wy and Wy, respectively. In the momentum
. €« % ) .
equations, 2oHk and %ﬁk are subtracted from the right—-hand side of the

corresponding equation. This modifies the final terms in Equations 71 and 72 to

At Tgx D§ B% . A T'E Dk Bk .
<= ook + EE + g $i>q and At <- p—oﬁk + gt + gb $i>q. respectively.

Spatial Discretization

50. In order to complete the conversion of the governing partial differential
equations into systems of algebraic equations, the FE method is applied to the time-
discretized form of the symmetrical weak weighted residual equations developed in the
previous section. Specifically, elemental approximations to the variables are
substituted into Equations 67, 71, and 72, the elemental equations are summed over
the global domain, and the required degree of inter-element functional continuity is
enforced. Interpolating basis with at least C° functional continuity are required to
discretize most of the dependent variables. Departures from this are noted below.

51. In all linear terms, surface elevation, velocities, and depth are
approximated over each element as:
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where n,; equals the number of nodes per element.

(73a)
(73b)
(73c)

(73d)

In nonlinear terms and certain

forcing terms, the entire term may be interpolated over the element as described

below.
52.
follows.
a.
b.
C.
d.

The nonlinear and forcing terms in the GWCE are approximated as

The Coriolis parameter and the fluxes in the Coriolis term are
approximated by:

'k kv & ik

f’%(UH)* o j§1 (f UH)j $; (74a)
'k kv 8 vk

f"*(VH)* v j{]i (f VH)j $; (74b)
The finite amplitude component of the free surface gradient is
approximated by:

Del
(¢BF ¥ I (k¢ (75)

The combined barometric pressure and Newtonian tidal potential term
is approximated by:
Ne)
Ps _ onk o Ps _ a4k 4.
The total depth factor in this term is evaluated using an L,
approximation:

k X 1 B
H* ~ Hf = —
= el T ng

(76)

el
{:1 H¥ (77)

The surface stress terms are approximated by:

Nel
(% ¢

Tsxyk
( ) t Po

Po

ite

(78a)

(ng k
Po

e

el Tsnk
L (307 ¢

= (78b)
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e

The bottom stress and To terms are approximated by:

(T,;k—— 7o) HXUK n [(T* - TO)HU]k (79a)

e

j=

(riko ro)HKVE j§1 [(74 — mo)HV]E ¢, (79b)

e

In the three—dimensional model options, if the computed friction
coefficient exceeds the maximum allowable value, the bottom stress
terms are approximated directly by:

k

oy ( 2% ¢ (80a)
pO J=1

k
o g ( 25 45 (80b)

f. The dispersive terms are broken up into their components Dyy, Dyy

1=

and Dyy, (defined in Part II), and discretized as:

2 (Dun)¥ ?f;ll Dyt 21 (81a)
%(DUV)k . ?5’31 Dyt %‘21 (81b)
8 (Du)t ?211 Dk §4 (81c)
%(DVV)k . ?511 Dyt %‘li (81d)

The baroclinic terms are not included in either ADCIRC-2DDI or
ADCIRC-3DL. Therefore the discretization of these terms is not
considered here.

The velocities that multiply the time derivative components of the
non—-conservative advective terms are approximated using Lo
interpolation:

Uha Ul L % Uk (82a)
- Deyp j=1 »

Vea vl = L5y (82b)
- Nep j=1 1

The free surface elevations that appear in these terms are
approximated using the standard Co approximation, Equation 73a.
The spatially differentiated components of the non-conservative
advective terms are approximated by

ou Del Bo;
(VB G0+ @ (VA B U G (832)
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0U\k k Nel k 0¢;
VH v (VH)Y, ¥ U
(v Ok x (vl £ Uk g
av e 0¢;
(VE F* = (VB BV 91

v el Ly 04y
(VE g e (VY £V o

where
1 Nel
UH), = — % (UH)X
( )el ne1j=1( )J
1 Nel
VH), = — & (VH)
(VI = 5 2 (VEDS

(83b)
(83c)

(83d)

(84a)

(84b)

53. Substituting the approximations in Equations 73 — 84 into Equation 67

and summing over the elements gives:

M

P
el=t

|

Nel
T At k+1
B0+ TBY <ovigy g

Nel o 0di O el 8d; Do
b ogstE b 88 B 5 v 8, B
EnsAt kv 095 0¢s k+1 0¢; 0¢s
+ == [<{ 391‘ aﬂ> + < Bg"’ 3%>Qel]

A -
= 2 <Ck¢_]7 ¢1>Q + (TO t 1) <C}|( 1¢j1 ¢i>Qel
) L 0 ) el x 0 O
— agAt [<m>=:1 hudulk 52, 2>q + < B hudalh 38, g8 |
Nel Nel

_ 2 k-1 0¢; 0¢ k-1 0¢; 0

bl hadoll 5 50+ < B hadelt” G G ]

EpsAt k-1 0¢; 06 k-1 0¢; 0¢;
+ B (<0 g G0, + <G 5P G,

- 004 - 0¢;
+ At [<UG(¢K - ¢ ¢, 3;%>91 + <Vi(¢k - ¢ ¢, 3‘3,’5—5931]
- A{<(UR)SUY 38, 980 + <(VE)kUX a%‘ 7,;{£>Qel
i} i i

+ <(UH)KVE B% H¢—>Q + <(VH)§ VX gﬁgl, %‘-5»981]

+ AtY<(f'VH)Y ¢;, 3%%261 - <('UH)} ¢, g%>9el]
-5 (0 G o, + <L %‘ﬂ gi .
- gAt2H§1[<(;£% an)k %;;ﬂ 3% >0t < ) %1 3%%
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of_(Tsx\k s Ofi Tsy\k s O
+ A<(TRgy, g + <(T0igy, Ghi>g |
/ 0¢; ’ i
= A{<[(r4 - To)HUS 4, aﬂxl>gel + <[(rt - T)HV]E 4, giy‘ﬁ>gel}

9 k 0 . 0 . k 6 . a . k 6 . 6 .
- AV{<Duk g, 380 + <Duk G 5P+ <Dudk GEh G0,
x 0¢i 0¢i 2 -
+ <vaj ] >Qe1] - At Fi 1-—1, ...N (85)

M = the total number of elements

where

2, = the elemental domain for the element, el.

Equation 85 can be rewritten as:

B0 5D + g Bt
?51 (2Dt + (ZgRL - MDD ek - agaezm(®ex
_ asgAtzM( )Ckl E_h%ﬁ M(??)Cls-l
+ av {Duiges - ey 4 MBvirer - ey
- avm{umyrvs + MBvayve + MOy + MO v vy
+ aemDevay - M8 umyy - 5-2— M3 oy
- gaem{DRs - amimt + avDZseE + M) Ty
- am{D(r - ro)EU) + M)y - ro)EVIYY
- At"’[Mgi) Duuf + M(5)Duvk + M(S)Duvk + M) 6)D k] ] At?F,
i=1 (86)
where
M) = <4, 950 (872)
M2 = <n‘_’1 hode 92, Gh>q + < ; h, ¢ %i, %bnel (87b)
M) = <GB, sy 4 <3§,‘?, F;,%Qel (87¢)
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mi}) = <G8 Sis, (87d)
MS?) = %‘i—i, Y 1>Qe1 (87e)
mi®) = g Bois, (871)
D) = <q;, §i5, (87g)
M) = <g, ‘ggi>9el (87h)
Note that the elemental matrices, M(l) M(l?), M(3) , MS‘},) and MS?) are
symmetrical and that M(s) M(7), and M(S) are non-symmetrical.

54. The fully discretized GWCE can be written in a compact form as:
I M (g = 3 S i=1, .N (58)
where
MR = (1 4 TeAbMD 4 g gaem(?) 4 Eught p(3) (89)
pe¥eE _ ?f:ll [2m{Der + (Z8% - MDDk - agarm{Py

- a3gAt2M(2-)(l~"1 + E—hiﬁ M(g)(k'l

+ e iUk (e - e+ mBvi(gr - g

- aemiDmE ok + M ey vl + MBuaykvE + MOvays vy

+ oD vays - MO umy - BSE M)

- garem(® )(_R. am)¥HE, + At2[M(?)(TL§)lj‘ + M(S)(Iﬂ)k]

— aepM{Di(ry - ro)EUE + M®)(rg - rEV]Y

- am{p,k + MS?)DW‘; + M{®p, k4 Mg?)DW}‘]] — At?F,

i=1, ..N (90)

In the three—dimensional options, if the computed friction coefficient exceeds the

P?WCE .

maximum allowable value, the friction term in the right side load vector is

slightly different:
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pGeE _ ?f}l (2Dt + (2L - m{Det = agarm e
- agaemiDeet 4 Englt M{3) ¢
+ At {Dus e - ey 1+ mBlviger - o)
- aepiBumur + MOvayk vl + M mk v 4 M(6)(VH)“IV1‘]
+ At2[M(7)(fVH)1; 8)(fUH 5,2—- M (g"’)k
- gAt2M(3)(—P—S - an)kHY,) + At?[M('.’)(Lsz)f; + M(s)(fﬂ)k]
- aem{D(C0x - ro(umy + M - (v
— A,k + MOk + MBpyk 4 Mg?)Dwg‘]] — At?F,
i=1, .N (91)

55. Global assembly and enforcement of the C° functional continuity
requirement leads to the following global system of equations:

N
G + GWC .
I LM ) fagy = (o i=1, ..N (92)
where
gM?WCE = the global banded system matrix

gP?"VCE = the global load vector

8¢k = the global nodal elevation vector
56. The fully discrete form of the momentum equations is obtained from the

time—discretized symmetrical, weak weighted residual form of the momentum equations,
Equations 71 and 72, as follows.

a. The local acceleration terms are interpolated using Equations 73b and

73c.
b. The friction terms are approximated by:

Negl

Uk v Uk, (93a)
=t
Nel

TAVE vy kvl (93b)
j=t
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mkUk v 3 rgkuk g (93¢)
j=t
el

THVE B orkvk g, (93d)
j=t

In the three-dimensional model options, if the computed friction
coefficient exceeds the maximum allowable value, the bottom stress
terms introduced on the right-hand side of the momentum equations
are approximated by:

Nel

(o) @ Z, o)k & (94a)
Del

(Gorp)* @ Z, Gk ¢ (94b)

¢ The Coriolis terms are approximated by:

phyket v g pyke | (95a)
ST e B &
rkyrk+1 flel rkyrk+t
frevet o 'Exfjvj é; (95Db)
J =
PRk 8 PR g (95¢)
=710 9 ¢
rkyk rkyk
freve o j2=3 ijj 9; (95d)
d. The lateral diffusive/dispersive terms are approximated using
Equations 73b and 73c for velocity and Equation 77 for total depth.
e. The barometric pressure and Newtonian tidal potential are
interpolated using Equation 76.
f. The surface elevation is approximated using Equation 73a.
g The surface stresses are evaluated as:
Netl
Tsx\k+t o TsxYk+l 4
(p—OH') = _]{31 (M)J ¢J (963')
(Ts )k+1 N nf)l (Eﬁ)k+l¢ (96b)
—p_gﬁ = j=1 Po J ]
CpF e £ @Rk g (s6c)
pol) 2 2 GoEi 4
CpF e £ (Opk g (s6a)
poﬁ = j =1 ﬁ i ]

h. The advective terms are approximated by:
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gUuk Nel Ho;
vk Uy gk 5 vk 9% (97a)

g OUE oo tel Ly 9
Ve 8 Ve E U 99, (97b)

vk el F;)
UGy ¥ U4 VE 99, (97¢)

K OVE o e ok 0
Ve 8 VEE V) 9 (97d)

where UX and VX are defined in Equation 82.

i. The dispersive terms are broken up into their components Dyy, Dyy,
and Dyy, (defined in Part II), and discretized as:

1 9D 1 "E! i
(H g}‘uu)k g (H;)kajl Duujl‘( g%l (98a)
1 6Duvk N 1 knel k a i
(H oy )l (H;) jgl Duv; a‘ﬁl (98b)
1 6D 1yig! 0¢i
(T ﬁuv)k = (H;)kjg . Duvj B% (98c)

e

1 avak 1 knel k 09;
(H Ty ) (H;l‘) j{]l Dyvj %‘l (98d)

where He; is defined in Equation 77.

The baroclinic terms are not included in either ADCIRC—-2DDI or
ADCIRC-3DL. Therefore the discretization of these terms is not
considered here.

57. Substituting the approximations in Equations 93 — 98 into Equations 71
and 72 and summing over the elements gives the discrete system of equations:

;J) n§1 1+ At /k) Ul_<+1¢_ > _ At <f/1-{Vl-“1¢- ¢'>
el=t j=1 <( 7 Txj) Vi % ¢ Q1 2 ivi ¥p ¥iTey

' . a 0 . R R O a .
+ BBt [<USEE 28, Zi>o + <UpmEgt g8 Sofin)>, |

At _, At g,
= <(1 - -2—7*‘;) Ukg;, $i>q, + 3 SEA%TN $>q,,

k. 081 0 (@i kpk, 081 0 (@i
- Bt [<USEY G5, Sfi>o + <UtHl G8 G(f)>, |

A k1 ' + k. i
- Sl + vt —am) + B 4k - an] 98 g5
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+ R + G 6 bi>a,
~ At[<U Uk S?Q, $>q  + <Vg Uk 09; » $i>q |
- Atk(n%;)kDuuf g%‘» $>q  + <(H;‘1)kDuV? o9i, ¢i>nell]
i=1, ..N (99)

and

M Del At . At
ezl)q j§1 [<(1 t 3 4‘?) Vk 1¢J’ ¢1>9 T <f/kUk’l¢j’ ¢i>Q1

+ BByAL [<Veimks 94 m(ﬁz—[)m + <viemk 0 ‘ay(gﬁ)%
= <(1 - %—tﬂéf) VEg,, $i>q,, + ’2— <{'¥U%g;, ¢;> Qe
- APt [<VITG 58 G, <vily B S, |
- g§_<[(P—‘L + (- anf) + (}5%& + G~ o)) Eﬁ >0,
At (Gt + (%-:ﬁ)ﬁ-‘] ¢ bi>q
— At[<UkVE g%", b>q + <VaVi o, 9i>a,]

1.k x 00; 1\x x O0¢;
- At[<(H;) Dy} 5%)1, $i>q , + <(H5) Dy 6%1’ ¢i>Qel]]

i=1, ...N (100)
Equations 99 and 100 can be rewritten as:
M Ilel
=B+ Phahnuen - SearDyvin 4 g a(@uke
i=

= (1 - Srm{Duk 4 Stpiy(Dye ﬂthzAtMg:;)Uj‘.‘
k.,
- gTM( @t c“ - ank) + (BS54 5 - o)

+ TM( )[(’rcs)x)}m + (Tsx)l_(] - At(UglMgz)Ulj‘ + VlélMJ(Si)Uﬁ‘)

7 8 .
- At(H;)k[Mgi)Duu“ + M{®p,) ]] i=1, ..N (101)
and _
M nej
21}1 | e1 [(1 + /k)M(l)Vk+1 + _%_t_f/kM(l)de + ﬂEh AtM(3)Vk+1
e = J -
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At oWk _ Aty 3
= (1 - Strgm{Dvr - Sbe(Dyk - gp aem(Pve

- eSO e ark 4 B 4 ¢k - an)
+ Sty [(Bﬁ)k*1 + (G5 - Ay(U Em{Tve 4 v M(S)Vk)
- Aty M{PDuk + M0y i=1, ..N (102)

58. The M(l}) matrices on the left side of Equations 101 and 102 and in the

first two terms on the right side of these equations are lumped so that all elements
are added onto the diagonal. The M(l?) matrices on the left side of Equations 101

and 102 are decomposed into diagonal and non—diagonal matrices. The non—diagonal
portion of M(l?) is moved to the right side of the equations. These operations give:

M nel
e£1)=1 jgl [(1 + _%_tTiic)M(lJlL)U?H %—tf’kM(lL)V‘“1 + ﬁEthtM(3D)Uk+1

= (1 - by - G lEVE - Ao+ ptuy)
- e {DIEEL & ¢k = an) 4 BEL 4 ¢f - o)
+ _2_M( )[(Tsx )k+1 + (Tsx )k] At(U 1M(7)Uk + Vk M(S)Uk)

_ At(H;)k[Mnguug* + M{&p, .k ]] i=1, .N (103)

= Q- Atr"-‘)Mg}L)V}‘ - %lf'}‘Mg}L)Uk - Etht(ﬁlMﬁ“)V?”Jr Mi3viy
kit
(R | )
+ 7
+ STt + Gl - auinDve + Vi (vl

- A TDuw + M0y iz, N (104)

M(lL) the diagonally lumped elemental matrix M(l)
M(3D) = the diagonal portion of the elemental matrix M(I?)
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M(3ND) = the non—diagonal portion of the elemental matrix M(3)

59. The fully discretized momentum equations can be written in compact form
as:

M
) g M Uk - MBE] vy = z (P™MEy oy, N (105)
el=t j=1 1=1 :

M
o) g M Uiy 4 IR qviey = 2 {PYME} i=1, ..N (106)
el=1 j=1

where

MU = 14 Stomi) 4 g A (3D (1072)

MilerJE = Aty ?MQ}L) (107b)

P = 8 [0 - St + Step(ivy
- Epat(aME™uin 1 gmBuy)
— gt DI + k- ary + BEL 4 o)
+ 7M< Gek + Gegtl - auoy Doy + vim(Du

- Ay ) [M (7)Duu§‘ + M(8)Duv ]] i=1, ..N (107c)
n
PP = 8 [(1 - frpuIvE - gl
- BparaME™Iver 1 pm(Bvy

_ g.E_M(S)[(P_.I,.1 + C‘S” - anlj”l) + (P-lé-‘- + Ck - 077]’()]
+ TM (Eﬁ)’“1 + (T—Sﬁ)k] At U“IMU)Vk + VK (S)Vk]
- At(H—I) MDD,k + MB)p, ]] i=1, ..N (1074)

In the three-dimensional model options, if the computed friction coefficient exceeds the
maximum allowable value, the bottom stress terms appear explicitly on the right side

of the momentum equations and therefore are included in PxME and PYME

Nel
XME _ 1L )k JAN P 5 § 1) M
P X {MSJ Juk 4 Stan(lys
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= By, At M3k 1 pmBuk)

M(7)[(LJ. + (- et 4 (%1% + ¢ — an¥)]

—2—M(1)[(Tsx)k+1 + (Tsx)k] At(Ulél MgZ)UIJ( + V§1M§§)U‘j‘)
1) Tox
- it Doy + fPpuct - sue{p (089
e _ P&l 1L At genr(1L
PPP = 8 (Ml - gty

— By, At M3V 4 g By
~ eSO 4 ek - arky + (BEL 4 ¢E - anb)
+ I + Gl - s + v
- Aty PDuw + MPD - Al ) (108b)

60. Global assembly and enforcement of the C° functional continuity
requirement gives the following systems of equations:

N
) [EMIME] (suky - [(MPME] (svEy = (ep¥UE) i=1, .N (109)
i=

N

5 [(eMP] {sUk1y 4 [BMIYE] {5VE} = {sPTVE} i=1, ..N (110)
j=1

where

sMIME ep2ME _ global diagonal system matrices

ij o ij
gP)i{ME, gP\i’ME = global right-hand-side load vectors,

gU}‘“‘, ngj“‘ = global velocity vectors in the x and y directions

Solution Strategy

61. The horizontal discretization for ADCIRC has been implemented with
three-node linear triangles and four-node bilinear quadrﬂatera.ls. The triangle element
provides a maximum degree of flexibility and is extremely cost—effective on a per——node
basis for long wave computations. All elemental matrices M( ) through M(S)

integrated using a numerical quadrature rule that is specified with the input data. A
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four—point Gaussian quadrature rule integrates the elemental matrices, Equation 87,
exactly (Connor and Brebbia 1976). However, for most applications, a three—point
Gaussian quadrature rule appears to be sufficient. The elemental matrices are
computed once and then stored for use during the time-stepping operations.

62. The GWCE is solved first. The global system matrix for the GWCE,
gM(i;?CE, is time—independent and is therefore assembled and LU decomposed only

once. gM?‘jVCE has a banded structure with a band width that is dependent on the

node numbering of the grid. Prior to running ADCIRC, the node numbering should
be optimized to minimize the maximum difference in the global node numbers

associated with each element in the grid. The right side load vector, gP(i;WCF‘, is

efficiently updated every time step since all elemental matrices have been
pre—computed. Flux-specified boundary conditions have been incorporated into the
load vector by the model formulation and therefore require no additional equation

manipulation. Elevation—specified boundary conditions are incorporated into the
GWCE

system matrix, EM7 i by zeroing out rows corresponding to boundary nodes with

specified elevations and placing a value of unity onto the diagonal. The boundary
condition values are then stored into the appropriate location in gP(i;WCE. The

equations associated with elevation—specified boundary conditions are multiplied through
by a constant to ensure that the modified global matrix has a good condition number.
The modified system of equations (i.e., Equation 92 modified to include the elevation—
specified boundary conditions), is then solved for elevation at the new time level, k+1.

63. The momentum equations are solved second and use the elevation values
at time level k+1 computed from the GWCE. The global system matrices for the

momentum equations, (gM?;E and gM?}‘E , are time—dependent and therefore need to

be reevaluated at every time step. However, since these matrices are diagonal, matrix
evaluation and decomposition are very economical. Specified normal flux boundary
conditions are incorporated into Equations 109 and 110 by reorienting the x and y
equation pairs that correspond to the specified flux boundary nodes into a locally (for
each node) normal/tangential coordinate system. The reoriented equations are then
replaced by the corresponding specified normal flow boundary condition values (Wang
and Connor 1975; Gray 1984).

64. The right sides of Equations 109 and 110 are dependent on CE‘”, (}‘, U}‘,

and Vlj‘, which are all known quantities, and on U%*! and V}“l (because of the lateral
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closure model). Therefore, these equations must be solved iteratively for velocities at
the new time level, k+1. gP)i(ME and 5P¥ME are updated each iteration with the new

values of U¥*! and VX*! until a specified convergence criteria has been reached. When
j i P g
Ey, is zero, no iteration takes place.

65. When a three—dimensional option is used, the external mode solution
depends on the internal mode solution through Dyy, Dyv, Dyv, Cr and 4 [or if the

drag coefficients exceed the maximum allowable values on 7, and 7,,.]. These

)
quantities are computed at each internal mode time step and assumed to be constant
in time for subsequent external mode time steps. If the external mode solution and
the internal mode solution are evaluated at the same model time, the external mode
solution is evaluated first. The updated surface elevations and depth-averaged
velocities are then used in the internal mode solution. This solution sequence requires
the specification of initial values for Dyy, Duy, Dyy, Ct, and v as input parameters for
the external mode solution.

Fourier Properties of the External Mode Solution

66. Fourier analysis characterizes the damping and phase propagation properties
of a numerical solution in relation to the corresponding analytical solution. Although
it is typically applied to the one—dimensional form of the shallow—water equations and
a constant bathymetric depth is usually assumed, the results give a good indication of
how a circulation model will behave in a more general two—dimensional, nonlinear field
application. They also allow inter—comparisons with other discretization strategies.
Procedures for applying Fourier analysis to the shallow—water equations are described
by Pinder and Gray (1977) and Lynch (1978).

67. The discrete form of the ADCIRC 2DDI governing equations has been
Fourier analyzed. These results are presented below along with results from the
Fourier analyses of several other numerical solution schemes for the shallow—water
equations. All of the other numerical schemes that were considered use primitive
formulations of the shallow—water equations (as opposed to the generalized wave—
continuity formulation used in ADCIRC). The schemes include a finite element
solution using linear elements (PEFE) (Wang and Connor 1975; Westerink, Connor
and Stolzenbach 1987, 1988), a second order, non-staggered, finite difference solution
(PENSFD), and a second order, staggered, finite difference solution (PESFD) (Hansen
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1956; Leendertse 1967). A second order, Crank—Nicholson scheme was used to
integrate the PEFE, PENSFD, and PESFD in time. As described previously,
ADCIRC uses a three-time-level scheme for the GWCE (a; = 0.35, a; = 0.30 and
a3 = 0.35), and a Crank-Nicholson scheme for the momentum equations. The bottom
friction coefficient (Equation 46) in each model was specified as

T« = 08 7 4/ gh /A (111)

where A is the wavelength of the Fourier component.

68. The modulus of the propagation factor indicates the ratio of the numerical
amplitude to the analytical amplitude during the propagation of one wavelength. The
phase of the propagation factor indicates the phase lag or lead a given wavelength
experiences during one period. Figure 1 presents the modulus and phase of the
propagation factor for the PEFE and PENSFD schemes. Comparisons are shown for
¢ = 0.1, 0.5, 1.0, and 2.0 where {; is the Courant number based on wave celerity,

¢ = ALY (112)

At is the time step, and Ax is the grid spacing. For increasing C;, both the PEFE
and the PENSFD solutions have less damping than the analytical solution for low
ratios of A/Ax. Neither solution, regardless of €., propagates energy at the shortest
resolvable wavelength, A = 2Ax. This characteristic of PEFE and PENSFD solutions
accounts for the severe 2Ax numerical noise problems encountered using these schemes.

69. Figure 2 presents the modulus and phase of the propagation factor for the
PESFD scheme and the generalized wave—continuity equation finite element
(GWCEFE) scheme used in ADCIRC. For low ratios of A\/Ax, both schemes provide
less damping than the analytical solution and show poorer phase propagation behavior
as C; increases. For a fixed {; and A/Ax, the PESFD scheme has slightly better
damping characteristics, while the GWCEFE scheme has better phase propagation
characteristics. At low (., the GWCEFE solution leads the analytical solution. As {,
increases, the GWCEFE phase propagation factor swings through a zero value
(corresponding to perfect phase behavior) and then develops a phase lag. This
indicates that there will be a local minimum in the time convergence curve with
optimal accuracy being achieved at ¢, » 0.5.

70. The primary difference between numerical solutions using PEFE and
PENSFD schemes and numerical solutions using GWCEFE and PESFD schemes is
that the latter schemes propagate energy at A = 2Ax. Propagation of 2Ax waves
corresponds to a non—folded dispersion relationship and prevents two responses from
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developing to a single forcing frequency, i.e., one physical response at the forcing
wavelength and one numerical response at a wavelength near 2Ax (Platzman 1981).
As a consequence, GWCEFE and PESFD schemes do not have the severe 2Ax noise
problem of the PEFE and PENSFD schemes.

Convergence Properties of the External Mode Solution

71. In order to verify the accuracy of the external mode solution of ADCIRC
and to establish convergence properties in space and time, ADCIRC-2DDI was applied
to a modified form of the quarter annular test problems originally developed and
applied by Lynch and Gray (1978, 1979) and Gray and Lynch (1979). These two—
dimensional, variable-depth test problems were developed to give insight into a
numerical scheme’s 2Ax oscillations and its ability to propagate longer physical waves.
The original geometry and bathymetry of Lynch and Gray (1978, 1979) were modified
as follows. The arc of the annulus was increased to 135 deg*; the inner radius was
decreased to 125,000 ft; the outer radius was increased to 650,000 ft. The resulting
geometry, with three land boundaries and one open ocean boundary, is shown in
Figure 3. A linearly varying bathymetry was used that increased from 50 ft at the
inner radius to 260 ft at the outer radius and a quadratically varying bathymetry was
used that increased from 50 ft at the inner radius to 1,352 ft at the outer radius.
These modifications accomplish two things. First, the modified domains are more
representative of a coastal region that extends to near or beyond the Continental Shelf
break. (In fact, the geometry and bathymetry are idealized approximations to the
New York Bight.) Second, the numerical difficulty of the test problems is increased.

72. A sequence of four discretizations was considered: a 6— by 8-node
discretization (Ar = 105,000 ft), an 11— by 15-node discretization (Ar = 52,500 ft), a
21- by 29-node discretization (Ar = 26,250 ft), and a 41- by 57-node discretization
(Ar = 13,125 ft). These are shown in Figure 4. Grids consisting of linear triangles
and of bilinear quadrilaterals were tested and gave very similar results. Only the
bilinear quadrilateral results are presented here. For each grid, five different time
steps were applied: At = TMy/8, At = TMy/16, At = TMy/32, At = TM,/64, and
At = TM;/128 where TM; is the M, tidal forcing period equal to 44,712 seconds.
ADCIRC-2DDI was run in its linear mode with an M, forcing frequency. Therefore,

*A table of factors for converting non—SI units of measurement to SI (metric) units is
presented on page 6.
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a. 6— by 8-node grid

b. 11- by 15-node grid

Figure 4. Grids used for the test problem (Continued)
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c. 21- by 29-node grid

isnunaAniiigin!

d. 41- by 57-node grid

Figure 4. (Concluded)
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the theoretical model response should have included only an M, wave. The resolution
of the M, wave provided by the sequence of grids varied between 17 and 312 nodes
per wavelength for the linearly varying bathymetries and between 17 and 703 nodes
per wavelength for the quadratically varying cases. Thus the M; wave was always
well-resolved. €, varied between 0.13 and 39 for the linearly varying bathymetries
and between 0.13 and 88 for the quadratically varying cases. ADCIRC-2DDI is
unconditionally stable in its linear mode and therefore permits the use of €; > 1.

73. All cases were forced at the open ocean boundary using ( = 1.0 sin(wuzt)

where Wy, 27/TM, is the M; forcing frequency. All other forcing mechanisms (i.e.,

tidal potential, free surface wind stress and atmospheric pressure gradients) were set to
zero. The Coriolis and advective terms were also neglected. The bottom friction
coefficient was set to 74 = 0.0001 and the value of 7, = 0.0001. All total depths

were set equal to the depth to the geoid.

74. The computations were hot-started using the analytical solution for the
specified geometry, bathymetry, and friction coefficient. The computations were then
run for 10 tidal cycles to allow a dynamically steady—state numerical solution to
develop. The elevation and radial velocity solutions at each node were recorded
during the eleventh tidal cycle and were Fourier decomposed. Typical results are
shown in Figure 5 for the sequence of runs using the coarsest grid and the linearly
varying bathymetry. The figures compare the exact analytical solution to the
maximum and minimum ADCIRC-2DDI solution for all nodes at the same radius.
These plots indicate that there are no spurious 2Ax modes in either the radial or
angular directions.

75.  Error measures were calculated from comparisons between the harmonically
decomposed numerical solutions and the analytical solutions. These were defined as:

1 Xp oy N v
E; = { N; i§=3 l(a(;i - aci) ] (113a)
v
Bz & = (b -bY) 2 (113b)
SRR AL
N 12
| PoA N .
E; = { N; iE=31(aui - aui) } (113c)
N V2
| P A N
E4 = { N; i{) I(Hui - bul) } (113d)
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Np = the number of nodes within the grid
ac, = amplitude of the sine component of the analytical elevation solution at node i
1

b‘é_ = amplitude of the cosine component of the analytical elevation solution at node i
1
ac, = amplitude of the sine component of the numerical elevation solution at node i

1

bg_ = amplitude of the cosine component of the numerical elevation solution at node i
1

a,. = amplitude of the sine component of the analytical radial velocity solution at
' nodei

bﬁ . = amplitude of the cosine component of the analytical radial velocity solution at
! nodei

aﬂ_ = amplitude of the sine component of the numerical radial velocity solution at
' nodei

bfl_ = amplitude of the cosine component of the numerical radial velocity solution at
! nodei

These error measures represent the absolute errors in the sine component of the
elevation solution (E1), in the cosine component of the elevation solution (E2), in the
sine component of the radial velocity solution (E3), and in the cosine component of
the radial velocity solution (E4).

76. A summary of the error measures computed for all of the test runs is
presented in Table 2. The error measures are plotted against {; (the average value
for a given grid) for the linear bathymetry test cases in Figures 6 and 7 (Figure 7 is
a blow—up of the low €, range in Figure 6), and for the quadratic bathymetry test
cases in Figures 8 and 9 (Figure 9 is a blow-up of the low (; range in Figure 8).

All errors show good spatial convergence; i.e., the more refined the grid, the lower the
error at any (.. In time, the errors decrease as €, decreases, until {; = 0.9 — 1.75
for the linear bathymetries and €; = 3.5 — 7 for the quadratic bathymetries. A well—
defined local error minimum exists for all grids within these Courant ranges for both
the sine and cosine components of the elevation and radial velocity solutions. This
local error minimum occurs because the phase of the propagation factor changes from
a phase lead to a phase lag, passing through a region of almost perfect phase
behavior, near €; » 0.5 (see Figure 2 and associated discussion). Figures 6 — 9
suggest that the optimal behavior occurs at somewhat higher values of €;. These
figures were plotted using the average value of €, for a given grid. However, the
primary errors are generated in the shallow portions of the domain. If the €; is
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adjusted to account for this, the optimal range of values changes to {; = 0.52 — 1.07
for the linearly varying bathymetries and ¢, = 1.07 — 2.14 for the quadratically
varying bathymetries. ‘

77. It is concluded that the external mode solution used in ADCIRC has
excellent numerical properties. There are no spurious 2Ax or 2At modes due to the
ability of the GWCEFE scheme to propagate high wave number energy. Convergence
properties in space and time are good with superconvergence occurring in the range
¢; = 0.5 - 1.5. In this range, more accurate solutions are obtained using larger time
steps.

Application of ADCIRC—2DDI to the English Channel and Southern North Sea

78. The accuracy and behavioral characteristics of the external mode solution
have been tested in field applications including (a) tidal and hurricane storm surge
simulations in the Gulf of Mexico (Westerink et al., in review), (b) tidal simulations
in the English Channel and Southern North Sea, (c) tidal simulations in a small
coastal inlet (Luettich, Birkhahn, and Westerink 1991) and (d) tidal simulations in
the New York Bight. The English Channel/Southern North Sea system is probably
the best documented field site presently in existence for testing a long-wave,
hydrodynamic model. Since the emphasis of this report is on the development and
testing of the various components of ADCIRC, the results of applying ADCIRC-2DDI
to the English Channel and Southern North Sea are presented below.

79. In the mid-1980’s considerable effort was put forth to establish and make
readily available a set of standard grids, boundary conditions, and verification data for
model evaluation in the English Channel and Southern North Sea (Werner and Lynch
1988). This data has been used as the basis for modeling studies for the Tidal Flow
Forum I at the Conference on Finite Elements in Water Resources, Lisbon, Portugal,
in 1986 and for the Tidal Flow Forum II at the VII International Conference on
Computational Methods in Water Resources, Cambridge, MA in 1988. Two collections
of scientific papers have been published from this work and can be found in Advances
in Water Resources, Vol. 10, No. 3 (1987) and Advances in Water Resources, Vol. 12,
Nos. 3 and 4 (Dec 1989).

80. The fully nonlinear version of ADCIRC-2DDI was applied to the grid and
bathymetry shown in Figure 10. The grid consists of 990 nodes and 1,762 linear

triangular elements. The model was forced by specifying 11 harmonic constituents for
elevation (O;, K;, My, N, S, Ko, MSy, MN4, My, Mg, 2MS) along the two open
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model boundaries. Wind stress and tidal potential forcings were not used in the
model runs. Model parameters were selected to match those used by previous
investigators to allow the direct comparison of model results with field data and with
previously published model results. The following parameter values were used in the
model: 7, = 0.0002s°1, At = 360s, C;f = 0.002322, f = 0.000113341st, and Eps = 0.0.
The time integration coefficients in the GWCE were set to a; = 0.35, a; = 0.30, and
a3 = 0.35.

81. ADCIRC-2DDI was run for the short—term test case suggested by Werner
and Lynch (1988) covering the period from 0 hr on 15 March 1976 to 24 hr on 17
March 1976. Werner and Lynch (1987) found that it was necessary to use a
minimum bathymetric depth of 15 m throughout the model domain to avoid
generating negative water depths during their simulations. ADCIRC-2DDI ran
successfully using a minimum bathymetric depth as small as 10 m, although the
simulated results were highly insensitive to this change at the 19 locations where
observational data were available (see Figures 11 and 12).

82. The first 47 hr 10 min of the simulation were used as a transient start—up
period. Figures 11 and 12 present comparisons between modeled time series and
observed time series of free surface elevation (at 11 stations) and depth-averaged
current speed and direction (at 8 stations) for the final 24 hr 50 min of the
simulation. (The locations of the elevation and velocity stations are shown in
Figure 10. The observed time series were actually reconstructed from 11 primary tidal
constituents at each station. The tidal constituents correspond to those used to force
the model open boundaries and were extracted from raw time series at each
observation station using harmonic analysis.) In general, the model does a good job
of simulating the observed results. Some of the differences can be attributed to local
topographic and bathymetric effects and to the inherent problems associated with
representing bottom stress in a depth—integrated model. Also, Werner and Lynch
(1989) point out that the model results contain harmonic constituents, generated by
nonlinear interactions within the domain, that are not included in the reconstructed
observed time series. By filtering this energy out of the model results, they were able
to reduce the average difference between the simulated and observed surface elevations
by approximately 40 percent. The worst comparison occurs at the tidal eélevation
station at Christchurch and is at least partially due to the neglect of the channel
between the Isle of Wight and the mainland (located approximately 25 km east of
Christchurch) in the model grid.

83. ADCIRC-2DDI was also run for the long-term test case suggested by
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Werner and Lynch (1988) covering the 190-day period starting at 0 hr on 15 March
1976. The first 5 days were discarded to allow for start—up transients and the
remaining 185 days were harmonically analyzed using the least squares package of
Foreman (1977). The amplitudes and phases of the primary surface elevation
constituents from the ADCIRC simulation, from a simulation by Werner and Lynch
(1989), and from the observed time series at the 11 elevation stations are compared in
Table 3. The overall comparison between model results and observations is reasonable
considering no effort has been made to calibrate the model by adjusting the bottom
friction coefficient, as attempted by Baptista, Westerink, and Turner (1989). Some of
the largest differences in phase occur at stations that are close to amphidromes. This
is because a small displacement of an amphidrome’s position can result in a large
change in the nearby phase values. Some of the largest relative differences in
amplitude (i.e., percent difference between the simulated and observed amplitude)
occur in the Mg constituents. Bottom friction is the primary nonlinear generating
mechanism for this constituent, suggesting that this process is not captured very well
by a depth-integrated model.

84. Figure 13 presents co—tidal charts for the entire domain for 14 tidal
constituents. The ADCIRC-2DDI results presented in Figure 13 and Table 3 compare
very closely with those of Werner and Lynch (1989). This is expected since Werner
and Lynch (1989) used a depth-integrated, finite element, GWCE-based model that is
similar to ADCIRC-2DDI. The minor deviations between the models are due to
ADCIRC’s use of a non—conservative formulation of the advective terms in the GWCE
as well as slight differences in the discretizations of several of the terms. The close
correspondence between the model results provides an excellent verification of the
formulation and numerical discretization used in the external mode of ADCIRC.
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Figure 13. Co-tidal charts for simulated constituents (Sheet 1 of 7)
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PART IV: INTERNAL MODE SOLUTION

Definition and Applicability of a 3DL Model

85. As discussed in Part II, mode splitting replaces the direct solution of the
three—dimensional governing equations with an "external mode" computation for free
surface elevation (using the vertically integrated governing equations) and an "internal
mode" computation for the vertical profile of velocity. It was noted in Part II that
all of the physics contained in the three—dimensional governing equations are included
in the vertically integrated equations if the bottom stress and the momentum
dispersion terms are specified correctly. The simple parameterizations of bottom stress
and momentum dispersion in terms of depth-averaged -velocity (Equations 28 — 31) are
physically correct only for the simplest flows (e-g., a logarithmic velocity profile over
depth). Mode splitting replaces these simple parameterizations with the internal mode
equations. Therefore, when the complete internal mode equations are solved, the
bottom stress and momentum dispersion used in the vertically integrated equations are
(in theory) completely consistent with the three—dimensional equations.

86. While the external mode equations are two—dimensional, the internal mode
equations retain the spatial variation of velocity in three dimensions. Considerable
computational savings can be realized if the advective terms and the horizontal
momentum diffusion terms are dropped in the internal mode computations (Nihoul and
Djenidi 1987; Davies 1988). This simplification eliminates all horizontal gradients from
the internal mode equations, thereby reducing them to one—dimensional equations in
space (over the vertical). When simplified internal mode equations are solved, the
bottom stress and momentum dispersion are no longer completely consistent with the
three—dimensional equations. However, these approximations should be physically
correct for flows in which the vertical distribution of momentum at each horizontal
grid point is determined by a local balance between the surface and bottom stresses,
vertical momentum diffusion, the Coriolis force, and the local inertia. (Clearly, this
should encompass a much wider range of flows than parameterizations solely in terms
of the depth-averaged velocity.) The required balance will exist when the rate of
vertical momentum transport is much greater than the rate of horizontal momentum
transport. Assuming horizontal momentum transport is dominated by advection, the
rate of vertical momentum transport will be much greater than the rate of horizontal
momentum transport in the three—dimensional governing equations if |

89



Z

%[E 6u] >> u-gu;

Scaling this yields

EycUc U3 L¢ h.Uc

where Ey¢, Ue, he, and L are a characteristic vertical eddy viscosity, horizontal
velocity, water depth, and horizontal length scale, respectively. Dimensional arguments
suggest Eyc » ¢hcUc where £ is a constant whose value for tidal and wind—driven
flows typically ranges from 10-% to 10-2 (Bowden, Fairmairn, and Huges 1959; Csanady
1976; Fischer et al. 1979; Davies 1985). Therefore, the simplified internal mode
equations should be an accurate approximation to the full internal mode equations
provided

£ >> 100 - 1,000

Since coastal and shelf waters are usually characterized by large length—to—depth
scales, a model based on the simplified internal mode equations should be widely
applicable in these waters.

87. The model based on the simplified internal mode equations will be called a
three—dimensional local (3DL) model. This name emphasizes the fact that the
simplified internal mode equations give values of bottom stress and momentum
dispersion for the two-dimensional (external mode) equations that are not fully
consistent with three—dimensional equations, but rather are based on a local
approximation of the three—dimensional equations.

Rationale for the DSS Technique

88. Despite the savings gained by simplifying the internal mode equations in
the 3DL model, the internal mode equations are difficult to solve numerically because
of the high velocity gradients that characterize the water column near the bottom and
surface boundaries and across strong demsity changes. Existing state-of-the-art
circulation models use velocity as a dependent variable and therefore require a fine
numerical discretization to resolve regions of rapid velocity change. Davies (1991) and
Davies and Jones (1991) have examined the computational effort required to resolve a
bottom boundary layer using a one-dimensional model through the vertical solved with
finite differences and several coordinate transformation/grid stretching schemes. For
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tidal flows having an eddy viscosity that is constant over the upper 80 percent of the
water column and that varies linearly with distance from the bed over the bottom 20
percent, Davies (1991) found that it was necessary to use a logarithmic or log-linear
coordinate transformation and at least 20 grid cells to obtain convergence of the
velocity solution. When the eddy viscosity was determined using a level 2-1/2
turbulent closure, the most efficient solution was found to require a log-linear
coordinate transformation and 50 — 100 grid cells over the vertical for both a
turbulent kinetic energy transport equation and the momentum equation.

89. Practical geophysical flows often have two or more regions containing sharp
velocity gradients over the vertical. Because of the computational overhead in time
and memory required to resolve these features, existing multi—dimensional circulation
models almost always omit the near bottom region and use a slip boundary condition
that expresses bottom stress as a quadratic function of near bottom velocity. This
assumption is physically correct only when the velocity profile below the lowest grid
point is logarithmic. An accurate treatment of surface and/or internal boundary
layers requires a fine grid in the regions of these layers. In many cases the required
computational overhead makes it impractical to resolve these features in multi-—
dimensional computations. A survey of the recent literature suggests that only rarely
have more than ~ 20 grid cells been used over the vertical in three—dimensional
engineering or geophysical model applications. For example, Oey, Mellor, and Hires
(1985) used 11 grid cells over the vertical in their model of the Hudson—Raritan
Estuary. Clearly, such models have limited ability to resolve even one significantly
sheared velocity gradient region. (Note: Davies and Jones (1990) have recently
published results from a three—dimensional model of the northern European continental
shelf using 45 grid cells over the depth. However, this model uses a coarse horizontal
grid and omits the advective terms in both the internal and the external mode—
governing equations.)

90. It is well-established from laboratory and field experiments, theoretical
arguments, and conventional one-dimensional models that the time-averaged vertical
shear stress varies rather smoothly through the water column, particularly near
boundaries. Therefore, it should be possible to use a relatively coarse vertical
discretization to solve numerically for the vertical shear stress, even in boundary
layers. A novel technique has been developed that allows the vertical shear stress to
be used in place of velocity as the dependent variable in the internal mode equations.
Applications of the DSS technique using linearized equations of motion (discussed in
detail below) have shown that it provides a highly efficient means of solving the
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internal mode equations. This technique promises to be invaluable for modeling

coastal and shelf circulation in which the bottom and surface boundary layers comprise
a significant portion of the water column and for modeling processes that are critically
dependent on boundary layer physics such as wave—current interaction, sediment
transport, oil spill movement, ice floe movement, energy dissipation, physical-biological
couplings, etc.

Development and Testing of DSS Method No. 1

91. Internal mode equations can be generated by subtracting the vertically
integrated equations from the three-dimensional equations (Wang 1982; Sheng 1983;
Davies 1985). Using the three—dimensional equations in the o coordinate system
(Equations 19 — 21), the non—conservative vertically integrated momentum equations
(Equations 25 and 26), assuming a constant density fluid, and neglecting advection
and horizontal momentum diffusion terms, the resulting internal mode equations are

i - 1 zZX
-g% - i = H;()—[(a——b)%— - Tsx + 7})):] (114)
0 L o [ 0Ty
T + 1fu a’“ )_5_2 Tsy + Tby (115)

92. Using the eddy viscosity relationships (Equation 34) to express 7,x and 7y
in terms of velocity and either the slip or the no-slip boundary condition (Equation
10) at the bottom, Equations 114 and 115 can be cast entirely in terms of velocity.
Numerical solutions can then be sought for the dependent variables, &« and ¥. This is
the standard velocity solution (VS) approach.

93. Alternatively, Equation 34 can be inverted to obtain expressions for
velocity in terms of stress ’

o

. H
i=u-U+ =) J ;z]’:f)v do (116a)
b
¥ =vo-V + o Tay_ 4 (116b)
b (a—D) | pokv
b

In Equation 116 the definitions of 4 and ¥ have been used and nonzero slip velocities
up and vp have been included for generality. Relating up and vy to the bottom
stresses, Tpx and Typy, via the slip conditions

92



Tox/Po = k up = k(ip + U) (117a)
Toy/po = k vb = k(¥p + V) (117b)

Equation 116 can be written as

o)

s . Tbx _ T
&= £E-U + W J 2X da (118a)
H bcr'r
& _ Tby _ 7
¥ = —ﬁpo V + =) J ———ﬁ-—po - do (118b)
b

(For a no-slip boundary condition, the terms 2 —E and _I% do not appear in Equation

118. The no-slip condition is approached as k-w.) Substituting Equation 118 into
Equations 114 and 115 gives:

o

Bl [ 7 00+ 3] -ty [ s 00+ 34

b
2x au x
po[(a"b)a"a“Ta + m] = &= — 1V - _H;: (119)

o c

d H Tzy ] [ J Tz x 7'ble
[(a——-b) J ook, do + S| + Ty | o, 40+ o
b b

1 2y
_ Hb;[(a‘b)aTo + Tby] =N - Teh (120)

Equations 119 and 120 have 7,x and 7,y as dependent variables and will be called the

DSS! internal mode equations. (The superscript 1 is used to identify DSS method
No. 1.) These equations are forced by the external mode solution (U, V, and H) and
the applied surface stress.

94. Equations 119 and 120 contain both integral and differential terms;
therefore, they are well-suited for a spatial discretization in which 7,x and 7,y are
expressed in terms of assumed shape functions such as the spectral or finite element
methods. Depending on the choice of the shape functions and the functional variation
of Ey over the depth, the velocity profile can be recovered from the stress profile by
solving Equation 118 in closed form. This is an important convenience because it
avoids the troublesome operation of numerically integrating the near—logarithmic
singularity that occurs in Equation 118 when E, varies with distance from a
boundary. The restrictions that a closed—form solution for Equation 118 impose on
Tzx, Tzy, and Ey are not severe. For example, 7,x, T2y, and E, may be expressed in
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terms of polynomials that span the vertical globally or in a piecewise manner.
Polynomial variations of 7,y and 75, are consistent with either the spectral method or
the finite element method; for most practical problems, E, can be approximated as
piecewise linear over the vertical (Furnes 1983; Davies 1987; Chu, Liou, and Flenniken
1989; Jenter and Madsen 1989).

95. The effectiveness of the DSS! technique is evaluated using a simple test
case consisting of flow generated by a specified surface stress aligned in the x—direction
in a wide, straight channel of constant depth with no Coriolis force. An analytical
solution can be found for the linear version of this problem and provides a benchmark
for the numerical solutions. For convenience, the linear governing equations are
repeated below:

gﬂ +1 8 = (121)

=-g -5)—”(- + WO(TS - Tb) (122)
Ao o~ lin - n) (123)
oy 8 Fim 0o+ £ D - w0t e n] = B 124

Equations 121 dnd 122 are the depth-integrated (external mode) continuity and
momentum equations; Equation 123 is the VS internal mode equation; Equation 124 is
the DSS! internal mode equation. Since there is no motion in the y—direction, the
y—direction equations and the subscript "x" in the stress terms have been dropped.

96. The Galerkin—spectral method, with shape functions consisting of Legendre
polynomials (LPs) over the interval =1 < ¢ < 1 is used to discretize the VS and the
DSS! internal mode equations. The mth order LP is denoted L, and can be computed
from the recursion formulas
Ly(o) = 1
Lio) = ¢

Leu(o) = [-2%%] o Ly - [&I] Le

The first eight LPs are shown in Figure 14. Other properties of LPs of note are
Lrs Lr(l) - 1
Ly = Li(-1) = (-1)

_jllLo(o) do = 2
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{1Lr(a) do =0forallr>1

It has been shown for wind—driven circulation that velocity solutions using Legendre
and Chebyshev polynomials yield results of virtually identical accuracy, that these are
highly superior to velocity solutions obtained using expansions of trigonometric

| functions, and that these are more accurate than velocity solutions computed with a
second-order finite difference scheme having the same number of degrees of freedom
(Davies and Owen 1979; Davies and Stephens 1983). For further information on the
use of spectral methods in three-dimensional circulation models, the interested reader
is referred to an excellent review by Davies (1987).

97. The Galerkin-spectral discretization for the VS internal mode equation is
obtained by multiplying Equation 123 by the weighting function L, and integrating
from -1 to 1, i.e.,

1 1 i
d . 2 0 (75 __1frs ™
mj Lo @ do - 2 J In 308 do = - § [pz po] JLm do (125)

-1 -1 -1

Integrating the second term in Equation 125 by parts
1 1

2 a T _ 2 Ts _ Th _ Tz aLm

I J Ly a;(p—z) do = R [Lms o Lup Do J% To do (126)
-1 -1

and substituting this into Equation 125 yields:

1

1
9 T, 0Ly _ 1 {rs ™
| +szard0—-ﬁ[p—s*p—HLmd”

-1 -1

Ts _ b
+ H{Lms Lmb po] (127)

Using the definition of the LP, Equation 127 simplifies to

0 =0 m =0 (128)

i S Ty 0Lg 2 Tb

EJLmud0+HJEEU_dU—H[—_LmeJ] m21 (129)
-1 -1

Since Lo(o) = 1, the operation that generates Equation 128 is equivalent to
integrating Equation 123 over the depth when m = 0. The identity in Equation 128
occurs because Equation 123, by definition, has no depth-averaged component.
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98. The final steps in applying the Galerkin—spectral dlscretlzatlon to the VS
are to substitute Equation 34 for 7,/p, in Equation 129 (noting that -6— '6_) and to

expand # as a series of LPs with time—varying coefficients, fy(t), i.e.,

N
(o) = 2 Ba(t) La(o) (130)

%BQ-JLH,L,, do +

Because gan do = 0 for n > 1, the necessary condition

n el =

ﬁJEvg—Iﬂgﬁﬂ %[%—Lmb%] m>1l  (131)

n=1 -1

{1\1 do = 0 is identically

satisfied by the spectral solution by using only the n > 1 LP. The solution of
Equation 131 requires a bottom boundary condition (Equation 117). After expanding
i, this becomes

zlﬂn Lypb =-0U + E%g (132)

99. The Galerkin—spectral discretization for the DSS! is obtained by
multiplying Equation 124 by the weighting function Ly(o) and integrating from -1 to
1, ie,

1 o 1
%%[JLmJ-ﬁ%ﬁ;dada] + [%gﬁ‘%) —Trzo] JLm do - JL,,,B—( T2) dg =

-1 -1 -1

[-g@ h—] JL do  (133)

Integrating the stress derivative by parts changes Equation 133 to

g

b [ ot ao] + (£ - B [ 0

-1 -1
1
2 T Th T, 0Lp
- R [Lms 7)—2- - Lmb ;J—O" - J% o dU'] [-5-— h—] J Lm do (134)
-1

Using the definition of the LP, Equation 134 simplifies to
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0=0 m = 0 (135)

o

1

h § T 2 T T, 0Lp e T

3 (] I» | ooty dodo] + § [two 72 +Jpoa—d]—2h§7 m2l (136)
-1 -1

The idgptity in Equation 135 occurs because Equation 136 has no depth-averaged
component.

100. The final step in applying the Galerkin-spectral method for the DSS! is
to expand T./p, as a series of LPs with time—varying coefficients, an(t), i.e.,

N
e (A Y aa(t) La(o) (137)
Po s
n=0
N 1 o N 1
h2 5 n Ln aLm '
ST P TR0 N APPSO B
n=0 .y n=0 "y

101. The bottom boundary condition was introduced into Equation 118 and
subsequently into Equation 138. Therefore it does not generate an extra equation, as
was the case for the VS. However, the stress expansion, Equation 137, does not
automatically satisfy the condition that ) { ' do = 0. Rather this must be enforced

explicitly. Using Equation 118 and the definition of u, this requirement generates the
additional equation

1 (o}
Tz —

J[U+~E+§J1md0’]d(f—0 (139)
Substituting the expansion for 7,/p, into Equation 139 yields
S (L 1 [ U
Y en [ﬁ;—b ! JE% doda] - U (140)
n=0 -1

102. The relative merit of the DSS! versus the VS was evaluated by
comparing solutions computed numerically with analytical solutions for the problem of
wind—driven circulation in a closed, rectangular channel aligned with the x—axis and
having a constant bathymetric depth. This was done for a steady—state case, for a
periodically varying wind stress, and for an instantaneously imposed wind stress.

103. In each test case, Ey was assumed to be linear over the depth as
expressed by

Ey(0) = Egoo+140y) (141)
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where 0, = 2zo/h is the dimensionless roughness height. It is well known from
theoretical, laboratory, and field experiments that an eddy viscosity that increases
linearly with distance from a solid boundary realistically reproduces the physics of the
boundary layer near the boundary (Monin and Yaglom 1971; Schlichting 1979; Grant
and Madsen 1986). Despite the fact that this does not hold over the entire depth,
(e.g., it has been suggested that E, should also increase linearly with distance below
the free surface (Jenter and Madsen 1989)), Equation 141 is used here because it
generates a realistic bottom boundary layer and because it simplifies the analyses of
model results by introducing only two parameters, E,, and o4, into the problem. As
~ is shown below, the presence of a velocity gradient region at the bottom is sufficient
to illustrate the advantage of the DSS over the VS. In fact, the use of an eddy
viscosity that does not also give a boundary layer at the free surface is a considerable
advantage for the VS, since it eliminates the additional need to reproduce velocity
gradients there.

104. Assuming reasonable ranges for z, of 0.1 to 10 cm, and for h of 1 to
100 m, suggests values of g, ~ 10-5 to 10-2. (The combination of z, = 10 cm and
h = 1 m, which gives o, ~ 1071, is not considered realistic since z, is typically
3 to 10 percent of the physical roughness height. In this case the physical roughness
would occupy the entire depth.) Assuming the slope of the variation of Ey with z

scales with U:, (U: = v 1/po ), then Ez ~ Ut,h. If Ui varies over the range 0.1 to
10 cm/s, E;o ~ 1073 to 10! m?2/s.

105. Equations 131, 132, 138, and 140 show that the VS and DSS! require the
specification of 75/p, (which is the input forcing) and U. To eliminate the possibility
that errors in the solution for U might affect the comparisons, U was obtained for
each test case from an analytical solution of Equations 121 — 123. As a result, errors
in the VS and DSS! over the vertical do not feed back into the solution for U as
they would if the complete problem was solved numerically.

106. In all of the results presented below, bottom stresses are obtained from
the VS by using computed bottom slip velocities and the linear slip boundary
condition (Equation 117). Comparisons indicated that this method gave more accurate
values of bottom stress than those obtained by evaluating Equation 34 at ¢ = -1.

(A similar conclusion was reached by Gresho, Lee, and Sani (1987).) Velocities are
obtained from the DSS! by solving Equation 118 analytically using the computed stress
profiles.
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107. At steady state, Equation 123 reduces to

Oy = Ts 2T (142)
which has the analytical solution

T, _ 0+l | 1-0 v

n=7 T @) (143)
where

_ 2+Uo 2+00 _ ]
oo Lt ”°[ z In( 002) ' (144)
s g -1+ (2400) [ ’5"0 In( 1':0) - 1J

and K = kh/E;, is the nondimensional slip coefficient. The nondimensional solutions
for velocity are

UE,, _

Telpe = 0 (145)
WE; _ 1 (1 _ o+l | 240, 4..,0+1400 o+l 0o 4. (0+1l+40

Ts 7)2 = T [K 1t In( 0o )] + 7 4 In( To %) (146)

108. The VS and DSS! are obtained from Equations 131, 132, 138, and 140 by
dropping the time derivatives, setting U = 0, and considering all other terms to be
constant in time.

109. Figure 15 presents a comparison of vertical profiles of horizontal velocity
for several combinations of K and o, computed from the analytical solution, the DSS!
using 2 LPs and the VS using various numbers of LPs. Equation 143 indicates that
the analytfcal solution for stress varies linearly over the depth, regardless of the form
of Ey. This solution can be represented exactly by the DSS! using only the n = 0
and n = 1 LP; therefore the DSS! and the analytical solution in Figure 15 are
identical. Equation 146 indicates that the analytical solution for velocity has a
logarithmic variation over the depth and consequently a potentially sharp gradient
region near the bottom. In Figure 15a the combination of a small K (large amount
of slip) and a large o, minimizes the gradient region. Over most of the depth the
velocity profile is nearly linear and therefore closely reproduced using a VS with 2 LP.
However, approximately 5 LPs are required to capture the mild velocity gradient near
the bed. In Figure 15b, the same K is used with o, reduced by two orders of
magnitude. This has the effect of pushing the gradient region closer to the bottom
(i.e., it is equivalent to increasing the depth by a factor of 100 for the same
roughness) and therefore steepening the velocity gradient. Because the velocity profile
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is nearly linear over much of the depth, it is reproduced well by the VS with 2 LPs.
However, near the bed, approximately 10 LPs are required for the VS to capture the
gradient region.- As discussed below, this results in a poor prediction of bottom stress.

110. In Figures 15c¢ and 15d, a high value of K is used, resulting in essentially
no slip at the bottom. For large o, (Figure 15c) a velocity expansion of 10 or more
LPs is required to reproduce this profile. Reducing o, by two orders of magnitude
(Figure 15d) sharpens the profile further, and approximately 20 LPs are required to
capture the velocity profile away from the boundary. Many more are required to
represent the gradient region near the boundary.

111. As noted above, an important reason for using a three-dimensional model
in place of a two—dimensional model is the former’s improved representation of the
bottom stress. However, since stress is proportional to the velocity gradient
(Equation 34), or the bottom velocity (Equation 117), the bottom stress may still be
represented poorly if the gradient region near the bottom is not resolved properly. To
illustrate this problem, a comparison was made between the analytical bottom stress
and computed bottom stresses from the DSS! and the VS over the practical range of
K and 0,. The DSS! reproduces bottom stress exactly using 2 LPs. On the other
hand, Table 4 presents a summary of the number of LPs required for the computed
bottom stress using the VS to come within 10 percent of the analytical bottom stress
as a function of K and ¢, Clearly, it is computationally practical to use the VS
only for large roughnesses and large amounts of slip, both of which tend to minimize
the velocity gradient at the bottom.

112. Although quite simple, the steady-state case demonstrates the relative
ease with which a DSS can resolve a realistic boundary layer (i.e., no bottom slip and
a linearly varying eddy viscosity) in a hydrodynamic model that explicitly includes the
vertical dimension. In the following examples we evaluate how this highly desirable
capability is affected by unsteady conditions. Only the no-slip case (K = 1,000) is
considered.

113. If a periodic surface stress is assumed of the form 74(t)/po= (7s/po)eict
(where w is the forcing frequency and i = =1 ), solutions can be sought to
Equations 121 — 123 that have the form U(t) = Ueiwt, i(o,t) = d(o)eiot, m(t)/po=
(To/po)eiet, and 5(t) = neivt. (Note: 75/po, U, i(0), mv/po, and 7 are all complex
variables; therefore they may be out of phase with each other.) Substituting these
into Equations 121 — 123 transforms the linear hydrodynamic equations into
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Table 4
Steady—State Bottom Stresses Computed Using Velocity Expansions

Tb(anal) -Tb( comp)

oo K #LP Tb(anal)
10-2 101 3 0.100
10-2 100 8 0.091
10-2 10t 9 0.099
10-2 102 10 0.078
10-2 103 10 0.078
10-3 10-1 8 0.096
10-3 - 100 21 0.098
10-3 101 24 0.095
10-3 102 24 0.098
10-3 103 24 0.099
104 10+t 22 10.100
104 100 <40 0.192*
104 10t <40 0.242*
104 102 <40 0.249*
104 103 <40 0.249*
105 10t <40 o 0.174*
10-5 100 <40 0.476*
10-5 101 <40 0.602*
10-5 102 <40 0.619*

10-5 103 <40 0.620*

* This is the minimum difference obtained using no more than 40 Legendre polynomials.
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iwn + 0 G = 0 (147)

iU = g g + g (75— ) (148)
(il — (agb) aa [(a—bl)lEv gua] _ ﬁ (7o — 75) (149)

114. The procedure used to solve Equations 147 — 149 analytically, together
with the linear slip boundary condition, has been presented previously (Lynch and
Officer 1985; Lynch and Werner 1987) and is not repeated here. Rather, the solutions
are given without derivation in Table 5 (Equations 150 — 163).

115. Spectral approximations for the periodic case are generated by expressing
Bn(t) = Pneit and an(t) = ageiet and substituting these as well as the periodic forms
of u(t), 74(0,t)/po, 7s(t)/po, T(t)/po and U(t) into Equations 130 — 132, 137, 138, and
140. The resulting equations for the VS are

N
#(0) = ) fa Ln(o) (164)
2 X n=1 1 X 1
%——ZiwﬂnJLanda+ ZﬂnJEv%‘gﬂggm a=§[%-%Lmb] my1 (165)
n=1 -1 n=1 -1
N
Zlﬂn Lup = - U + & (166)
n=

and for the DSS! are

X
%@ =Y oa La(o) (167)
n=0
) N 1 g N 1 '
%— 2 iwan JLm J é’% dede + 2 anU L, 0L2 de + LnbLmb] = -;—z m>1 (168)
n=0 -1 -1 n=0 -1

1

an[]%‘;—b + % JJ é’% dada] = -H— (169)

0 -1-1

i ] =

n

116. The periodic solution depends on the dimensionless parameters K and o,
(as found for the steady-state solution), a dimensionless channel length L’ a
dimensionless frequency (1, and the dimensionless position in the channel x/L. L’ is
the ratio of the channel length, L, to the wave length of a shallow—water wave having
period w (Equation 154). Q is the ratio of the time scale for momentum to be
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Table 5
Analytical Solution for the Periodic Test Case*

8(0)Ego _ UoEso (Ao~ Al] b oy (229 Az]
h7rs/po — hTs/[po B 2(2+0,) B

UEzo — UoEzo [1 + Al] + 1 A2
h7s/pe- h7s/[po B 2(2+0,) B

(o) _ U.E Al(a) 1 Az(O’)
oul [2 hgsﬁo B * 9Fs; —B (o+1+00)

UoEzo _ i(1+70) (l—exp(—/\L’))exp(,\L’]’%) B (l_eXP()‘L/))eXP(“)‘L,%)}

h7s/po exp(AL’) — exp(-AL’)
L’ = wL
vgh
_ wh?
Asyin-1
y = 2A (—1
= A1£-1 )A2 _ A2(—1) o
B(A1+B) B 2+0'0

Ax(0) = m(0)ie1) ~ p()in(1)

Aol0) = @) [ al-1) = 22 1) — i) (1) - 2R2 i)
B = ju(1) pal-1) — 278 1)) = 1) (1) - 22 i)
u(o) = ber[[ﬂ(a+1+ao)]1/2] + i bei[[Q(a+1+ao)]V2]

poo) = ker[[Q(a+1+ao)]1/2] + i kei[[Q(a+1+ao)]1/2]

(150)
(151)

(152)

(153)
(154)

(155)

(156)

(157)
(158)
(159)
(160)
(161)

(162)

(163)

*ber, bei, ker, kei are zeroth order Kelvin functions, an overdot (') = d/dg,
an overbar ( ) = % Ii do
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transported through the water depth, h?/E,,, and the forcing time scale, 1/w,
Equation 155. Assuming ranges for w of 10-3 sect to 105 sec’t, L of 1 km to

103 km, and h and Uy as given previously, suggests L’ ~ 105 to 102 and Q ~ 10+ to
102. In all cases results are presented for x/L = 0.5, as these are representative of
the behavior throughout the rest of the channel.

117. Figures 16 and 17 present magnitude and phase portraits of the velocity
structure for K = 1,000, L’ = 1, and four combinations of o, and Q. For the case
2 = 10", momentum is transported through the depth in only a fraction of the
forcing period. Figures 16a and 16b and 17a and 17b show that the velocity
magnitude and phase obtained from the DSS! using 2 LPs are virtually identical to
the analytical solution; therefore, the stress variation is very close to linear over the
depth. This linear stress variation suggests that the momentum balance over the
depth is nearly at steady state and is consistent with the low value of Q. Since
steady state is approached as Q - 0, the DSS! using two LPs gives a highly accurate
solution for 2 < 101 as well. The VS is able to capture the phase change through
the water column with a comparable number of LP to the DSS!. However, as was
the case at steady state, for o, = 1072, approximately 10 LPs are required to
reproduce the velocity magnitude with an accuracy comparable to the DSS! using
2 LPs. For o, = 107, more than 20 LPs are required.

118. For the case Q = 10, the vertical momentum balance is no longer near
steady state; consequently the DSS! requires more than 2 LPs to capture the vertical
stress variation. Figures 16c and 16d and 17c and 17d suggest that approximately
4 LPs may be needed by the DSS!. The VS, however, requires at least 10 LPs for
0o = 1072, and more than 20 LPs for g, = 107

119. Figures 18 and 19 compare the amplitude and phase behavior of the
analytical solution for bottom stress with solutions obtained using the DSS! and VS.
These runs were made using a single value of o, = 107, but varying Q and L’. The
104 change in L’ has minimal effect in these pictures, indicating that the number of
LPs required for the DSS! or the VS to converge to the analytical solution is only
very weakly dependent on L’. For © < 1, the DSS! with 2 LPs is nearly identical to
the analytical solution, while for larger Q@ the number of LPs required by the DSS!
increases to as many as 7 for Q = 102. Considering the fact that comparable results
using the VS require the use of more than 20 LPs, the DSS! is computationally quite
superior to the VS for all Q.

120. Although the Coriolis force was omitted from these test cases, the results
can be used to infer whether a DSS will be equally effective when the Coriolis force is
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included. The counterparts to Equation 123 for the case in which Coriolis is included
are

iwg - o = (0) O ((ab)Ey Oy, 5, (Tox = Tsx) (170)
iwr + fa = (@) & (ab)By 8Ty, 11‘,170 (Toy — Tey) (171)

It has been shown (Lynch and Officer 1985) that the linear combinations of @i and ¥

gr s L3I0 and gz W
transform Equations 170 and 171 into
. N -b) 0 -b)E, 0V* 1 .
(wyr - (020) O (ab)Ey 07y 2hp0{('rbx ~ Tex) + i(wy - rsy)] (172)
. . ~b -b)E, 0V- 1 .
i(wA)o- - @_h_) .ga ((a‘_F 5 = mo[('rbx — Tsx) — i(Tpy — 'rsy)] (173)

121. Equations 172 and 173 show that the vertical structures of ¥* and ¥- are
uncoupled and that each is analogous to the structure of @ in the absence of the
Coriolis force, except that ¥* is forced by the frequency w + fand ¥- is forced by the
frequency w — f Therefore the vertical structures of ¥* and ¥- will depend on the
dimensionless frequencies Q2+ = Q + Fand Q- = Q - F respectively, where
F= fh?[E,. At mid-latitudes, f~ 104 sec!, giving the range of F~ 103 to 101
This yields values for Q* and Q- in the same range as ; consequently the results
shown in Figures 16-19 are also indicative of the performance of the DSS! and the VS
when the Coriolis force is included in the governing equations.

122. Analytical solutions can be obtained for the test problem for a transient
forcing by decomposing the forcing into its Fourier components, using the periodic
solutions presented above for each Fourier component and superimposing the resulting
periodic solutions. In this section an illustrative set of results for bottom stress are
presented for the often—used problem of an instantaneously imposed wind on an
initially quiescent channel. Representative values of L = 100 km, h = 50 m,

0o = 0.01, and Ez= 0.5 m2/s are used.

123. An instantaneously imposed forcing cannot be represented exactly by a

finite Fourier series; however,

N
_rs(t) 1 sin((2n-1)mt/T)
Ts-steady 2 t 2nzl 7(2n-1) (174)
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gives an approximation to a square wave of period T, as shown in Figure 20. By
selecting T to be larger than the time required for the basin to reach steady state
and considering only the period 0 < t/T < 1, a reasonable representation of an
instantaneously imposed wind can be obtained and used to develop an approximate
analytical solution. Sensitivity analyses indicated that when 50 or more terms were
used in Equation 174, minimal change occurred in the analytical solution of the basin
response and any change that did occur was limited to times very close to zero (i.e.,
on the order of t/T < 1 percent). Seventy—five terms (N=74) were used in Equation
174 for the solution shown in Figure 20 and the runs presented below.

124. The VS and the DSS! for the transient test case were obtained by
discretizing Equations 123 and 124 in time using a Crank-Nicholson scheme. As
discussed above, the analytical solution for U was used to force these equations,
thereby eliminating any feedback of error from the vertical representation into U.
Figure 21 presents a comparison between bottom stresses obtained analytically and
from the VS and the DSS. The DSS! with 3 LPs is quite close to the analytical
solution except very near t = 0 (due primarily to the overshoot in the forcing in
Figure 20). Conversely, 15 or more LPs are required for the VS to attain comparable
accuracy. We note that this test case uses o, at the upper limit of the practical
range and therefore is the easiest case for the VS to capture. For smaller values of
0o, the transient performance of the VS becomes even poorer as suggested by the
steady-state results in Table 4.

125. The results of this section suggest that shear stress can be a highly
efficient substitute for velocity as the dependent variable in the internal mode
equations. For this to be accomplished, it is only necessary that the shear stress and
the vertical gradient of velocity be linked via an eddy viscosity relationship.
Depending on the choice of shape functions and the functional variation of eddy
viscosity over the depth, the velocity profile can be recovered from the stress profile
in closed form. Under these conditions the difficulties associated with numerically
integrating a near-logarithmic singularity are avoided. Most practical problems can be
solved subject to this restriction by allowing a global or piecewise polynomial variation
of 7, and a piecewise linear variation of E,.

126. One disadvantage with the DSS! is that it yields a fully populated matrix
on the left side of the discretized equations that must be reformed, decomposed, and
solved at every time step if a time-varying eddy viscosity is used. This requires ~ N3
operations to solve for stress and ~ N2 operations to extract velocity (using
Equation 118), where N is the number of LPs that are used. Although often only a
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few LPs are required for an accurate solution, as N reaches ~ 10, the computational
attractiveness of the DSS! rapidly diminishes in comparison to a VS that only requires
the solution of a banded matrix (e.g., Lynch and Werner 1991). Part of the reason
for the fully populated matrix is due to the spectral method’s use of globally, rather
than locally, defined functions. If Equation 124 is discretized using the finite element
method with linear elements, the left-side matrix is the sum of a triangular plus a
tri-diagonal matrix. This requires ~ M2 operations to solve, where M is the number
of nodes used over the depth. It can be shown that the triangular part of the matrix
arises because of the integral term in Equation 124.

Development and Testing of DSS Method No. 2

127. The solution of a fully populated or near—triangular matrix system can be
avoided by reformulating the DSS internal mode equations to eliminate integral terms
from the left side. This can be accomplished by generating internal mode equations
by taking the vertical derivative of the three-dimensional momentum equations rather
than by subtracting the vertically integrated equations from the three—dimensional
equations. The use of internal mode" equations derived by taking the vertical
derivative of the three—dimensional equations has been reported by Tee (1979).
Although this report focuses primarily on the simplified internal mode equations for a
constant—density fluid, the derivation of the full internal mode equations is presented
below for completeness.

128. Differentiating the o—coordinate horizontal momentum equations
(Equations 19 and 20) with respect to o, and substituting Equation 21 for dp/do
gives
TG0 * VEED) + 5 % * VHyee) + % 0y * ovRe) ~ 1% -

K-H—Ol :,zx - abx + g‘;‘ (175)

(Note, this is illustrated for the x—-momentum equation only. The y-momentum

equation follows directly.)
Using the eddy viscosity relationship for 7,x and 7,y (Equation 34) the vertical
gradient of velocity can be expressed in terms of the shear stress as

Ou Hryx

Ts ~ Ea-b)po (176a)
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ov _ Hr
o = Wv Py 7a | (176b)
Substituting Equation 176 and the expansions
b B - D
i) Bu 0v
v 53 = %5

into Equation 175 gives:

i} [ Hr,x ] fHT,y a-b) 827, __0 [ uH7,x ] _ 0 [ vHT,x ]
ot | Ev{a-b)po Ev(a-b)p,  Hp, ~do? x| Ev(a-b)ps] ~ Oy|Ev(a=b)po

7] wHT, Hr,y Ou  Oby Omy
- BE[EV( a—b)){po] + Ev(a—b)po ET—BJf—v aDb)po &y dc T To (177)

Using the additional expansions

i} [ wH7,« ] _ 'rzx Trx 0H n duH n ovH
BE Ev( a."b)po (a.""'b)po H_( EVZ a—B ’po HT -3)(_ 33;—-

0 { Hr,x ] sz Tzx

ot | Ey(a-b)p, (a—b)po ﬁ( * E,(a-b )Po '5—

d [ uH7Tzx ] sz Tzx ouH
ox|E,(a-b)p, (a—-b)po ‘55('( Ev(a—b)po ox

] vHT,x _ vH 3 ,7.x Tax ovH
W[EV( a—b)po] ~ (a-b)po W( ) + Ey(a-b)po 0y

Equation 177 can be written in final form as

a T;x sz a‘b 2 527—23( — (a:""'b) abx amX
-‘%{EVPO] Evpz T H%, 802 T H [da - 60] (178)

where cy represents the contribution of the nonlinear advective terms

_ 0 [72x d 'rzx] _ .0 [’rzx] Tax OV _ Tgy Ou
e = ua’_([Evpo] VW[EVPO W% EvPo + EvPo W Ev/’o W (179)
Applying the same transformation to the y-momentum equation gives
a1, 7, a-b)? a—b)[db om
GlEm] + v - Gk oo = o - ol B - 5] (130
where '

_ J[r 0 [1, olr Tay OU  Tgzx OV
s = — g B] - viglEe] - v GlE] B BB (181)

Introducing the complex shear stress 7, = 7ux + iTzy (wherei = /= 1),
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Equations 178 and 180 can be combined into a single complex equation

0 Tz e T a-b)? 527'2 _

W[Evpo] tifg -, g ctbtm (182)

where

¢ = cx + icy (183a)
- a-_b abx : ab

b=~ LHJ[%_ +1 7552] (183b)

m = (g [g%l}‘ t+i %3—1!] (183¢)

Because both 7, and Ey may vary in time, the discretization of Equation 182 in time
may be facilitated by expanding the leading term as:

Of 7] _ 1 0 /mg 71,1 OEy
Ao = & GG R B 184
Substituting Equation 184 into Equation 182 and multiplying both sides by E, gives

EERY 2
5 7D - p:Ezv g%v + ifg2 - (ale);)JoEv aagﬁ = Eve + b + m] (185)

129. For the 3DL model, the baroclinic, advective, and horizontal turbulent
momentum terms are assumed to be equal to zero. This leaves

i) szl e 7, (a-bh)? 8% r, _ :
Glems] + itw; - Gt T =0 (1862)
or
o7 T, OFE T a—b)?E, 021, _
;f) _ pozv Wv + lfp_i - (j__lrplo__v _633 =0 (186b)

as simplified DSS? internal mode equations. (The superscript 2 is used to identify
DSS method No. 2.) We note that for an eddy viscosity that is constant in time,
Equations 186a and 186b have the form of complex diffusion equations for stress.
This provides a physical interpretation for the internal mode equation; i.e, it describes
the turbulent diffusion of stress through the water column.

130. Because of the second derivative term in stress in Equations 186a and
186b, two boundary conditions are needed to solve either equation over the vertical.
The free surface boundary condition is

TzofPo = Ts[po at o = a (187)

where 75 is the specified surface stress. A second boundary condition can be
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generated by requiring the depth average of the internal mode velocity to match the
external mode depth-averaged velocity. From Equation 118 this becomes

a o
bb

L;p

131. To avoid the fully populated matrices generated by the Galerkin—spectral
method, the DSS? uses the Galerkin-finite element method to discretize the internal
mode equation over the vertical. 7,/p, is expanded over M-1 depth intervals using
depth—dependent, locally defined basis functions F(o) and complex coefficients v(x,y,t)

M
rz(x,zpo, ot) _ 2 % (o) (189)
r=1

The Galerkin—finite element forms of Equations 186a and 186b are obtained by
substituting Equation 189 for 7,/p,, multiplying each equation by Fy(o) and
integrating with respect to o over the interval from a to b:

M a a a
_h)2 2
] (Bl [0 0] v [y e (g ] =

m=1 b b b

n=1 .M (190a)
and
S [ra : Py OBy a—b)2( v . O%F,
Z{[E%m + it | FaFa do = 70 | Spfa G 4o - g, B8N [p p, 0 da} =0
m=l b b b

n=1, ..M (190b)

132. Linear chapeau functions will be used for Fy(o). The tendency observed
in the DSS! results for stress to become linear over the depth for Q < 1 suggests that
these functions should give a good representation of stress if the element size is
selected so that Qe ~ 1. (Qe is identical to Q except it is defined using the element
size rather than the total depth.) However, Equations 190a and 190b require a C!
interpolating basis. To lower this requirement to C° we integrate by parts:

an 0Fn g, = Fa()22n(2) _ p(p)2Ea(b) J 0Fn 0w 4o (191a)
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a
2
J EvFo 50 do = Ey(a)Fa(2)258(2) _ B,(b)Fy(b)25n(b) _ J 9 (B Fy) Y g
b

‘ (191b)
for Equations 190a and 190b, respectively.

133. Using linear basis functions, when n = 1 and n = M, the first two terms
in Equations 191a and 191b exactly cancel the integral terms in these equations |
making the total diffusion terms equal to zero. However, when 2 < n < M-1, the
first two terms in Equations 191a and 191b are identically zero. Therefore, for
2 < n ¢ M-1, Equations 191a and 191b can be substituted into Equations 190a and
190b to give physically meaningful equations:

M i a a a
. F,F, —b)%( 6F, OF,
Y {%[% JTmeH da] + ifyg J——ﬁ‘;v—da + T @H%ljga—ga—’“da] =0
m=1 b b b

n=2 .M1 (192a)

a

{[g%ﬂ + if'ym” FaFodo — fyma-J FaFaln(Ey) do + 7al® JgE(Ean)aFm } ~ 0
b b

’z’

m=1

.M-1 (192b)

134. The boundary conditions are used to supplement Equations 192a and 192b
when n = 1 or n = M. Equation 187 is used in place of the n = M equation:

Re{'YM} = Tsx/Po and Im{'YM} = Tsy/Po | (193)

In place of the n = 1 equation, Equation 188 gives
* [yaFalb H ([°F
nm L do dot = U + iV 194
mzl{J__r(l+7m(a—_552££E; } ¥ (194)
135. Velocity is recovered from stress by solving the discretized version of
Equation 118
M

u+ iv = E{Jm_FﬁL@-f-fym@gwr% da} (195)

m=1

136. Equations 192a or 192b and 193 form a tri~diagonal system; Equation 194
adds a fully populated bottom row to this system. However, only a few extra
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computations are required to reduce the system to tri—diagonal. Therefore, the
number of operations required to obtain a solution for stress at each time step scales
with M. Since 7,/po is piece wise linear over the depth, the integrals in Equation
195 can be evaluated analytically for many functional forms of Ey. For most practical
model applications, it can be assumed that E, has a piece wise linear variation with
depth (Furnes 1983; Chu, Liou, and Flenniken 1989; Jenter and Madsen 1989). This
is physically correct near boundaries and makes the analytical solution of the stress
integrals particularly simple. Using this functional form for Ey, the number of
operations required to analytically extract velocity from stress also scales with M.

137. An initial evaluation of the DSS2? has been made using the same test
problems solved for the DSS! and the VS. For these tests f = 0, 7y= 0, and Ey is
constant in time. Therefore, Equations 192 — 195 are simplified to:

M a a
6111 Fan a,—b2 aFn aFm _
) {6?‘de0+ 7mLmlJ7ia—z;a—d”] =0

(5

=
I

2, ...M-1 (196a)

a

)

AT
FaFado + T @h—‘;lj O (BFn) O da] —0 n=2 .M1  (196b)
b

m=1

b
%, = Tax/bo n=M (197)
o [m o ((°F
Evm{go +W2JE—‘3dada}=U n=1 (198)
m=i
bb
= Fy(b hn [°F
—_— Ji1] m
u = mzl’)’m { Do + '(a—_B)' J E—-; dO’} _ (199)
) b

138. To distinguish between the two internal mode equations, results are
designated as DSSZ or DSSZ depending on whether they are based on Equation 196a
or Equation 196b, respectively. In all of the results, a specified number of equal-sized
- elements was used over the vertical. It may be possible to improve the efficiency of
the DSS? further using elements that are not equally sized. However, this option has
not yet been investigated completely.

139. In the steady-state test case, the stress distribution is linear over the
depth (Equation 143); therefore, both the DSSZ and the DSSE give the exact solution
using one element over the vertical. The number of degrees of freedom (NDF) in the
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finite element solution, (i.e., the number of simultaneous equations that must be
solved) is equal to the number of nodes used in the discretization (number of nodes =
1 + number of elements). The NDF in the spectral solution is equal to.the number
of LPs used in the discretization. In both the DSS! method and the DSS2 method,
the exact steady-state solution is obtained using two degrees of freedom.

140. Results from the periodic test case are shown in Figures 22 — 26. When
) < 1, the DSS? is nearly exact using one finite element (two degrees of freedom)
over the depth, Figures 22a and 22b, 23a and 23b, 24a and 24b, and 25a and 25b.
For Q@ > 1, more than one finite element is required over the vertical for either DSS?2
to converge to the analytical solution (Figures 22c and 22d, 23c and 23d, 24c and
24d, and 25c and 25d). Comparing these results to the DSS! results indicates that
both DSS? methods require more degrees of freedom than the DSS! method to reach
the same level of convergence. The bottom stress plots presented in Figure 26
demonstrate the properties of the DSS? method further. In particular, they indicate
that the DSS? is quite effective in the range Q ~ 10 or less. It may be possible to
extend this range to higher values of Q if an unequally spaced finite element grid is
used over the depth.

141. A time history of bottom stress for the transient test case is shown in
Figure 27. Comparing this to Figure 21a indicates that both DSS? methods require
four degrees of freedom to give a solution that is approximately equivalent to the
DSS! using three degrees of freedom.

142. In conclusion, new internal mode equations have been developed that
allow shear stress to be used as the dependent variable in the internal mode solution
and that yield a nearly tri-diagonal matrix system. While both DSS? require more
degrees of freedom than the DSS! method to obtain comparable results for Q > 1,
(due to the use of linear finite elements in the DSS? versus spectral functions in the
DSS1), the matrix structure of the DSS2 matrices makes this method much more
efficient than the DSS!.

Implementation of Wave—Current Interaction in a DSS Model

143. It is often observed in lakes, coastal waters, and shelf waters that near
the bottom the orbital velocities associated with surface waves are as large as or
larger than the mean current velocity. In such cases the surface waves have a
significant effect on the bottom stress and the current profile. Several investigators
have developed theoretical models to account for this wave-current interaction. To
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thoroughly assess the usefulness of the DSS approach, the effort required to implement
the Grant and Madsen (1979) model (GM model) with a DSS of the internal mode
equations has been considered. The GM model assumes that the mean current
velocity can be determined as follows:

a. inside the wave boundary layer, z < &y,
Ey = & |Usen| 2 (200)
| Usew| = %Ol"'c + 7wl (201)

a no-slip boundary condition is applied at z = z,, where z, is the
physical bottom roughness

b. outside the wave boundary layer, z > dy
Ev = K 'U*cl Z (202)

1
Vel = 5 I7e|? (203)

a no-slip boundary condition is applied at z = zy3, where z,, is an
apparent bottom roughness experienced by the current due to the
wave—current interaction.

In these relations, k = 0.4 is the Von Karman constant, 7 is the bottom stress due
to the current alone, 7y is the maximum wave-induced bottom stress during a wave
cycle, and 6y is the thickness of the wave boundary layer.

144. The GM model can be included in a DSS of the internal mode equations

as follows.

a. Estimate zqa and |Ugc| based on values at the previous time step.

b. Calculate Ey; and use the DSS model to predict 7.

c. Solve Equation 201 for |Uycy| using 7. from the previous step and
Ty from Equation 53 in Grant and Madsen (1979). Since 7y is a
function of Ukcw, Equation 201 must be solved iteratively.

d. Determine z,, using Equations 46 and 49 in Grant and Madsen
(1979).

e. Recalculate E; using the new 7.. Use this and the new value of zg,

in the DSS model to predict 7. Go to step ¢. and iterate until 7,
converges.

145. Because two levels of iterations are required to implement the wave—
current interaction, it may be computationally infeasible to use this scheme in
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practical model applications. It may be possible to simplify this procedure in two
ways in the proposed model. First, rather than iterate as described in step e., zoa
can be calculated explicitly in time based only on results from the previous time step.
This should introduce little error into the solution if the time step is small enough
that changes in zo, and 7. are relatively small. Second, following the suggestion of
Spaulding and Isaji (1987), 7w can be determined by neglecting the effect of the
current on the wave within the wave boundary layer. In this case

where fy is the wave friction factor (Jonsson and Carlsen 1976) and Uy is the
maximum bottom wave orbital velocity. For fully rough, turbulent flow, f; can be
determined from -

= log,, 22 - 0.12 (205)

+ log,,
4 /Iy 4 Ty
where Ay is the bottom excursion amplitude of the wave and kg is the Nikuradse
equivalent sand roughness of the bottom (typically z, = ks/30).

146. The brief outline presented above suggests that the GM wave—current
interaction can easily be included in the DSS model. In fact, if the implementation
procedure outlined above for the DSS is compared with that described in Grant and
Madsen (1979) for a standard VS, it is evident that the DSS simplifies the use of the
GM model by eliminating the complications introduced by a quadratic slip bottom
boundary condition.
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PART V: SUMMARY AND CONCLUSIONS

147. This report documents the theory and methodology behind the ADCIRC
(Advanced Circulation) model’s 2DDI (2—dimensional, depth-integrated) option and the
3DL (3-dimensional, local internal mode equation) option. ADCIRC is based on the
three—dimensional Reymnold’s equations simplified using the hydrostatic pressure and the
Boussinesq approximations. Prior to their solution, the three—-dimensional equations
are separated into a set of external mode equations (the two—dimensional, vertically
integrated equations) and a set of internal mode equations.

148. The external mode equations can be solved by themselves (the 2DDI
option) for depth-averaged velocity and free—surface elevation by parameterizing
bottom stress and momentum dispersion in terms of the depth-averaged velocity. Key
features of the external mode solution are the use of a generalized wave—continuity
equation (GWCE) formulation and the Galerkin—finite element (FE) method in space
using triangular or quadrilateral elements. The FE method provides maximum grid
flexibility and allows highly efficient numerical solutions to be obtained using model
domains that include complicated bathymetries and shoreline geometries that also
stretch considerable distances offshore to implement open—water boundary conditions.
Detailed analyses and testing of ADCIRC-2DDI have shown that it has good stability
characteristics, generates no spurious artificial modes, has minimal inherent numerical
damping, and efficiently separates the external mode equations into small systems of
algebraic equations with time-independent matrices. Applications of the
ADCIRC-2DDI model to the English Channel and southern North Sea, the Gulf of
Mexico, Masonboro Inlet, and the New York Bight have shown that it is capable of
running month to year-long simulations while providing detailed intra-tidal
computations.

149. In stratified flows, Ekman layers, wind—driven flows in enclosed or semi—
enclosed basins, or flows affected by wave—current interaction in the boundary layer, it
is generally impossible to parameterize bottom stress and momentum dispersion in
terms of depth—averaged velocity. In such cases, it is necessary to solve the internal
mode equations for the vertical variation of horizontal velocity and use this to
evaluate the bottom stress and momentum dispersion terms in the external mode
equation. Due to the shallow water depths that characterize coastal and shelf
settings, the internal mode equations can often be simplified by dropping the
horizontal gradient terms. This gives internal mode equations that express the vertical
distribution of momentum at any horizontal position as a local balance between the
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surface and bottom stresses, vertical momentum diffusion, the Coriolis force, and local
inertia. The 3DL model option is formulated using the simplified, local internal mode
equations. Existing numerical solutions of full or simplified internal mode equations
use velocity as the dependent variable. Therefore, it is necessary to use a fine
numerical discretization to resolve the sharp vertical gradients of velocity that occur
near the bottom boundary and in wind—driven flows near the surface boundary.
During the course of the ADCIRC-3DL model development, a novel technique was
discovered that replaces velocity with shear stress as the dependent variable in the
internal mode equations. The resulting direct stress solution (DSS) allows physically
realistic boundary layers to be explicitly included in a three—dimensional model.
Detailed testing of the DSS method has demonstrated its considerable advantage over
standard velocity solutions and has led to an optimized DSS formulation. This
treatment of the internal mode equations should be invaluable for modeling coastal
and shelf circulation in which the bottom and surface boundary layers comprise a
significant portion of the water column and for modeling processes that are critically
dependent on boundary layer physics such as wave—current interaction, sediment
transport, oil spill movement, ice floe movement, energy dissipation, physical-biological
couplings, etc.

150. Considerable effort has gone into the development of ADCIRC to produce
a model that has simultaneous regional/local capabilities, as well as very high levels of
accuracy and efficiency. This has been achieved by combining extreme grid flexibility
with optimized formulations of the governing equations and numerical algorithms.
Together, these allow ADCIRC to run with improved physical realism and a
significant reduction in the computational cost of most presently existing circulation
models.
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